

British Lichen Society

Bulletin

no. 136: Summer 2025

British Lichen Society Bulletin no. 136

Summer 2025

Since David Hawksworth's seminal publications on lichenicolous fungi in the 1970s and 1980s, interest in these specialised organisms has increased steadily. The recent publications, in 2022 and 2025, of 'Flora of lichenicolous fungi' by Paul Diederich and his co-authors have given a major boost to such studies. In this Bulletin you will find Vince Giavarini's full account of lichenicolous fungi of the New Forest, perhaps Europe's best example of an ancient forest. See our front cover for an interesting example, its discovery in the New Forest being the first occurrence in Europe. Elsewhere in this issue you will find records of other lichenicolous fungi new to Britain.

It is reassuring to observe that many of our more recent members are becoming skilled at identifying lichens as evidenced by new names in our 'New, Rare and Interesting' section. This is particularly welcome as the usefulness of our database depends on records from all around Great Britain and Ireland.

There are new initiatives afoot and we hope (hint!) to hear about them in future Bulletin articles. There is, for instance, encouragement from our President to record more in churchyards as many have not been visited by lichenologists since the days of the late Tom Chester and his churchyard group. They are not easy habitats to study but there are helpful techniques and the guardians of these places are often receptive to conservation advice. It is widely known that the records on the database show certain inevitable biases – a major one being the localities of active recorders – but the demise of the dedicated churchyard group of the last century has resulted in a misleading picture relating to the decreased frequency of typical churchyard taxa.

Our Conservation Committee often has to deal with issues that are not clearcut as there may be conflicting opinions where each side has some valid points. How to deal with ivy on trees is one such matter so congratulations to Neil Sanderson and his colleagues for preparing a BLS position statement on ivy which is published here and will soon be on the website.

The Society's role in education continues to grow as evidenced by regular reports in the Bulletin but you may not be aware of additional resources provided through zoom sessions by some of our members. For example Di Napier leads a particularly inspirational and successful group getting to grips with microscope techniques.

Your editor is retiring after the forthcoming winter Bulletin so the Society will be looking for a new editor. The job involves work, of course, mainly restricted to the periods before the two Bulletins, and liaising with authors and officers in the Society. If you would like to know more, please get in touch.

Lastly, thank you to Rachel Marsh for her desktop publishing assistance with this issue.

Front cover: *Minutoexcipula tuckerae* parasitic on *Pertusaria pustulata*. Section of a sporodochium showing brown, 1-septate conidia together with the asci of the host. Photo © M. Putnam

Microhabitat in relation to successful *Lobaria pulmonaria* transplants

My husband Ben and I are lucky enough to live in a house with ten mature trees in the garden. There are six sycamores *Acer pseudoplatanus*, three common limes *Tilia x europaea* and a Turkey oak *Quercus cerris*. We are at an altitude of 230 m on the northern slopes of the Lammermuir Hills in East Lothian, and all the trees, especially the sycamores, are plastered with a shaggy grey coat of *Evernia prunastri* and *Parmelia sulcata*. There is also an array of crustose species whose identities are currently beyond us. There's a bit of *Bryoria fuscescens* on the Turkey oak, and on the thinner upper sycamore twigs *Ramalina farinacea*, *R. fastigiata* and *R. fraxinea*, revealed only when they are blown down to ground level in strong winds. But there are no Lobariion species. Indeed, East Lothian is one of the few Scottish counties for which there are no records at all for *Lobaria pulmonaria*, the most common member of the Lobariion community (British Lichen Society, undated). Why not? And could it grow here?

I observed that *L. pulmonaria* grew exuberantly on mossy fallen branches on the ground, as well as on trees and rocks.

Although widely associated with temperate rainforests in the popular imagination, the current western distribution of *L. pulmonaria* in Great Britain and Ireland has more to do with historic atmospheric pollution and woodland clearance, and it is not a reliable rainforest indicator species (Averis, 2023a). Indeed, it grows in parts of Great Britain with less rain, warmer summers and colder winters than East Lothian, and as it was recorded in the 1970s and 1980s on riverside trees near the village of Longformacus, only 15 km away from our garden (B. Coppins, pers. comm.), there is no obvious macroclimatic reason for its absence. However, woodland clearance in what is now East Lothian was early and thorough, with the fertile soils of the lowlands attracting farmers from around 3500 years ago (Owen, undated). Hondius' version of Timothy Pont's 16th century map, published in 1630 (National Library of Scotland, undated) shows only isolated enclosed woodlands, presumably managed, in East Lothian, and English visitors such as Samuel Johnson famously remarked upon the absence of large trees in southern and eastern Scotland (Johnson, 1775). This suggests a break in the continuity of suitable woodland habitats and ecological niches, resulting in a dearth of lichens associated with old woodland (B. and S. Coppins, pers. comm.).

Another contributing factor is likely to be that East Lothian, downwind of the entire industrialised Central Belt of Scotland, was bathed in toxic smoke not just since the industrial revolution but for almost a thousand years: coal was being mined and burned at the eastern edge of the county by the early 13th century, the last open-cast pit did not close until the 1990s (Haddingtonshire's History Society 2023) and there was a coal-

fired power station in operation at Cockenzie until 2013. The air is now the cleanest it has been for many centuries.

Although *L. pulmonaria* was likely to have been an early casualty of agricultural and industrial development in this part of Scotland, there is no reason to suppose it never grew here. With the vanishing of heavy industry, sulphur dioxide (SO₂) pollution is now negligible, and although nitrate pollution from intensive agriculture is a potential problem in the arable farmlands of the lowlands, it seems to be less so where we are, with indicator species such as *Xanthoria parietina* only occasional on the upper twigs of the trees. Would *L. pulmonaria* be able to grow here now? Given the scarcity of the species in southern and central Scotland, natural recolonisation from windblown or bird-carried spores and vegetative propagules seems unlikely. Might transplanted material succeed?

In the west Highlands, where we do a lot of our fieldwork as botanists, *L. pulmonaria* is so abundant that thalli grow enormous, fall off the trees and lie in decomposing drifts along roadsides. Small quantities may thus be gathered for potential transplants with a clear conscience. Our sycamores seemed to be the best potential hosts, given how common it is to see *L. pulmonaria* on old sycamores in the west Highlands. We've planted hazel, rowan and crab apple, all of which host *Lobaria* species in the west of the country but all are still young with thin, smooth stems to which it would be a challenge to attach anything.

From 2017 onwards I brought back small pieces of *L. pulmonaria* from visits to the west Highlands and attached them to the bark of the sycamores, using nails, Superglue or netting held down by nails. None of these transplants succeeded – the thalli soon dried up and were blown off the trees by the wind. Then, while working

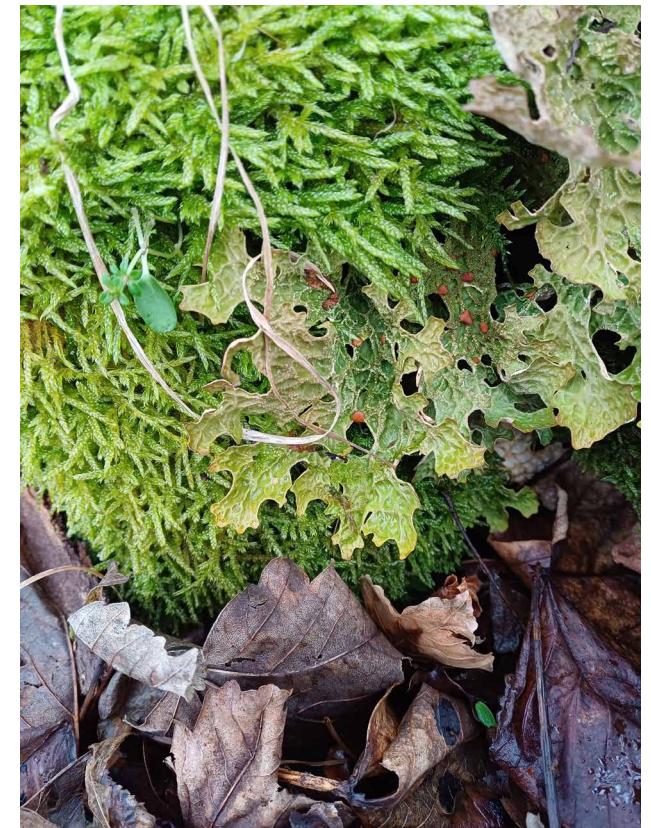
Lobaria pulmonaria transplant established on fallen sycamore branch with a complete cover of the moss *Hypnum cupressiforme*.

Mature sycamores and limes in our garden with young hazel in the foreground. *Lobaria pulmonaria* has become independently established at the base of this hazel from a transplant at the top of the bank about 5 m behind.

Close up from photo left: newly established young growth of *Lobaria pulmonaria* on a hazel stem about 2.5 cm diameter.

in Glenborrodale in Ardnamurchan, in the early spring of 2022, I had a new idea. I observed that *L. pulmonaria* grew exuberantly on mossy fallen branches on the ground, as well as on trees and rocks. There are mossy fallen branches in our garden too. It was worth an experiment.

I brought back a handful of loose thalli from the roadside to transplant into two locations, both facing east: 50 cm above the ground on a moss-covered stump of sweet chestnut *Castanea sativa*, and about 10 cm above the ground on a moss-covered fallen sycamore branch lying at the top of a bank. I attached the material with steel clout nails. By the end of the summer the lichen thallus on the chestnut stump was reduced to a few loose shreds, much browsed by molluscs, but the one on the sycamore branch was independently attached to the underlying moss *Hypnum cupressiforme*, had put on new growth which was also attached to the substrate, and was producing apothecia as well as soralia. Now, in spring 2025, it is still there and still doing well, though all the material has gone from the chestnut stump. And, to my astonishment and delight, in early 2024 I discovered a new thallus of *L. pulmonaria*, independently established on a slender hazel stem about 15 cm up from the base of the bush. It is about 5 m from the transplanted thallus on the sycamore branch. It's still growing too and there is very


little evidence of mollusc-browsing on either of the two patches.

This suggests that the climate and environment of East Lothian are indeed suitable for *L. pulmonaria* to grow, produce propagules and spread locally, at least in the short term. It also makes me wonder about the balance between the species' needs for shelter, humidity and light.

Although *L. pulmonaria* will grow on trees at woodland edges and on exposed coastal rocks in the west Highlands, it became obvious that exposure to wind was the greatest impediment to the establishment of the early transplants in East Lothian, even in a location with a moss-covered substrate to provide a foothold and increase local humidity. Terrestrial lichens, like bryophytes, rely on external water, and need to be wet enough for enough of the time to be able to photosynthesise and grow, but not so wet that they are permanently saturated (Gilbert, 2000). In the high-rainfall areas of western Scotland it is common to see *L. pulmonaria* in open habitats such as roadside trees and gardens, but in the drier east, the species might be more dependent on the atmospheric humidity provided by more sheltered and shaded habitats.

L. pulmonaria is stated to need well-lit conditions and even direct sunlight (Whelan, 2024). Although the transplant and the new thallus get full light in winter and spring, during the summer half of the year they are heavily shaded for most of the day by a dense sycamore canopy and are considerably overtopped by the ground vegetation: a sward of woodland grasses and herbs such as red campion *Silene dioica*, hogweed *Heracleum sphondylium* and goosegrass *Galium aparine*. This suggests that rather than *needing* a lot of light, *L. pulmonaria* is able to *tolerate* a lot of light in the parts of the country where atmospheric humidity is generally high. Even in the far west, *L. pulmonaria* grows luxuriantly in dense woodland, especially hazel woodland, in which the interior is heavily shaded in summer.

This small experiment suggests that establishing transplants of *L. pulmonaria* in this part of the country has the best chance of

Lobaria pulmonaria transplant attached to *Hypnum cupressiforme* and producing apothecia as well as soralia.

succeeding if the thallus pieces are initially attached to a mossy substrate to which the thallus can become independently attached. The moss will also begin to grow over the surface of the thallus, helping to hold it in place. The transplants do best in a sheltered location, close to the ground and facing away from the prevailing wind, and where reasonably tall ground vegetation can provide enhanced humidity and shade in dry summer weather. This seems to be more important than being brightly illuminated all year round. Walker and Cant (2023) also found translocations of *L. pulmonaria* in the eastern Lake District doing better in the more reliably damp conditions on the north or shaded sides of tree trunks, and perhaps even in more favourable climates, selecting mossier and more sheltered substrates would give more guarantee of success. It might also be worth trying translocation experiments in places such as West Lothian, where a number of pollution-sensitive bryophytes, including species once thought to need a strongly oceanic climate, are making a comeback (Averis, 2023b).

All in all it is exciting and encouraging, and I look forward to seeing whether these new populations survive and develop.

References

Averis, A.B.G. (2023a) A Provisional Definition of Temperate Rainforest in Britain and Ireland (<https://tinyurl.com/definitiontemperaterainforest>)

Averis, A.B.G. (2023b) Epiphytic bryophytes on young trees in the Central Belt. *Native Woodlands Discussion Group Newsletter* 48(1): 38–42.

British Lichen Society (undated). *Lobaria pulmonaria* species and map (<https://tinyurl.com/lobariapulmonaria>)

Gilbert, O. (2000) *Lichens*. HarperCollins, London.

Haddingtonshire's History Society (2023) A mine of information: coal mining in East Lothian – Haddington's History Society (<https://tinyurl.com/coalminingeastlothian>)

Johnson, S. (1775) *A Journey to the western islands of Scotland*.

National Library of Scotland (undated). View map: Pont, Timothy, 1560?–1614?; Hondius, Jodocus, 1563–1612 A new description of the shires Lothian and Linlithgow – Counties of Scotland, 1580–1928. (<https://maps.nls.uk/view/00002595>)

Owen, O. (undated) The archaeology of East Lothian – the fourth statistical account. (<https://tinyurl.com/archaeologyeastlothian>)

Walker, C. & Cant, C. (2023) Monitoring *Lobaria pulmonaria* translocations at Haweswater. *Bull. British Lichen Society* 132: 26–29.

Whelan, P. (2024) *Lichens of Ireland and Great Britain*. Holm Oak Press, Dublin.

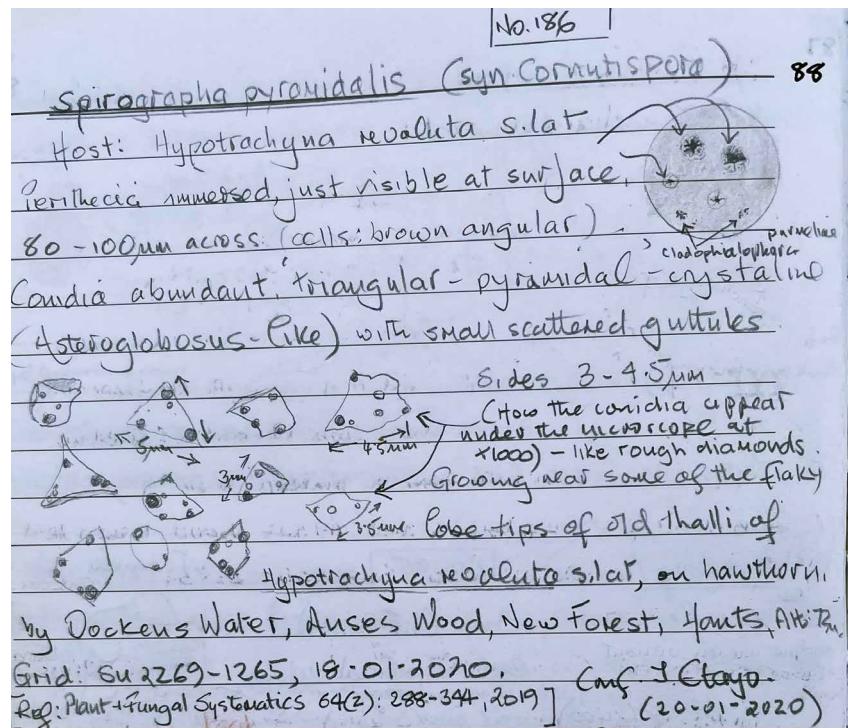
Photographs

© Alison Averis

Alison Averis

alisonaveris@gmail.com

Lichenicolous fungi on epiphytic lichens in the New Forest: a modern checklist


Since the late 1960s, the New Forest has been extensively worked for lichens resulting in detailed studies, first by Rose and James (1974) and later by Sanderson (2010, 2017 & 2024). In Gilbert's captivating book 'Lichens' (2000) he asks: 'What is there left to discover about the lichens of the New Forest?' This was the question I was wrestling with while holidaying in Tenerife during February 2019, when I hit on the idea of navigating my way through the minefield of lichenicolous fungi (LFs), especially those associated with the Forest's epiphytic lichens. During my 18-year spell as lichen surveyor, most of my parasitised lichens were intercepted by Brian Coppins or passed on to experts such as David Hawksworth, the global leader in this field whose stimulating article in British Wildlife (Feb. 2010) provides an instant portal into the glamorous world of 'Fungi living on lichens'.

Vinney Ridge in the New Forest
Photo © V. Giavarini

Searching for lichenicolous fungi (LF) meant networking with like minds. Sadly, introductory LF primers are non-existent but luckily I had a couple of unread older texts (Hawksworth 1979 and 1981) gathering dust on my shelves. I also had access to a copy of Hawksworth's 'draft' keys (2000). So I bought two, 200-page logbooks in which to catalogue my records – including sketches and drawings – and began to search the

online literature. Using Facebook I enlisted with an international group specialising in these fungi. Throughout the pandemic I disappeared into remote Dorset woodlands or raided my herbarium for evidence of these extraordinary life forms. Once I felt confident to tackle the New Forest, I contacted Neil Sanderson (NAS) for an up-to-date checklist of its lichen fungi which in September 2019 ran to about 50–60 species. Historically, very little had been done in the Forest to explore these fungi other than a short British Mycological Society workshop held in 1998, based in Lyndhurst. Thus began five years of dedicated fieldwork.

Collections were studied both macro- and microscopically using online keys and reliable, though somewhat dated, Vickers microscopes. Good examples of each species have been deposited in the author's personal herbarium. The majority were collected and identified by the author. All collections were examined in tap water or when necessary in 5% KOH. *Tremellas* and other lichenicolous *Basidiomycota* (Diederich *et al.* 2022) were first sectioned then pre-treated in KOH before staining with erythrosin in ammonia. During this project, advice on any unusual or interesting material was sought from experts such as Brian Coppins, Paul Diederich, Damien Ertz, Javier Etayo and Wolfgang von Brackel, or sent for further analysis. The results of this work should interest those lichenologists with a particular fascination with lichenicolous fungi, who work either locally or within their county woodlands, forests or parklands throughout Great Britain and Ireland.

Between April 2019 and May 2024, over 200 sites scattered across 150 1km

squares in the New Forest renowned for old growth pasture woodland – including many with internationally important lichen assemblages but also investigating other lesser known localities – were surveyed for lichenicolous fungi. This resulted in finds of 143 lichenicolous fungi on epiphytes. It excludes all the surrounding heaths and moors which are responsible for eleven more, namely: *Arrhenia peltigerina*, *Arthonia apotheciorum*, *Arthrorhaphis grisea*, *Bachmanniomyces varius*, *Cladoniicola staurospora*, *Corticifraga fuckelii*, *Hawksworthiana peltigericola*, *Phaeoseptoria peltigerae*, *Polycoccum peltigerae*, *Sphaerellothecium cladoniae* and *Taeniolella cladoniicola* which would swell the Forest total to 154.

Recently discovered species new to Britain and Ireland (NBI) resulting from this project have appeared regularly in the BLS Bulletin from 2019 to 2024.

Several more such as *Biatoropsis hafellneri* on *Usnea cornuta* (NBI 2017a), *Dacampia cyrtella* on *Lecania cyrtella* (NBI 2017a), *Arthonia parietinaria* (NBI 2017b) on *Xanthoria parietina*, *Taeniolella toruloides* on *Thelotrema lepidinum* (NBI 2017b), *Sphaerellothecium cinerascens* on *Cladonia parasitica* (NBI 2018a), *Lichenochora physciicola* on *Physcia tenella* (NBI 2019a), *Taeniolella arthoniae* on *Lecanactis abietina* (NBI 2020a), *Lichenochora galligena* on *Physcia tenella* (NBI 2021a), *Lecidella parasitica* on *Pyrrhospora quernea* (NBI 2022b) and *Tremella pertusae* on *Pertusaria pertusa* (NBI 2022b) though not new British species based on this survey, are also recent additions to the New Forest checklist.

Tremella pertusae forming galls (basidiomata) on *Pertusaria pertusa* Photo © M. Putnam

The study was delayed twice due to Covid. Collections made by the author between April 2019 and February 2022 averaged around 16 species/site. From March 2022 to end of February 2023 this figure rose to 22 species. From March 2023 until the end of February 2024 the total increased further to 25. This was due to a better understanding of the Forest ecosystem, its component trees and the growing list of its hitherto unknown lichen parasites. The highest number of LFs reported from a single outing stands at 35 from Mallard Wood. Ober Water yielded 34, Denny Wood (Stag Park) 33, and there were 32 each from Bratley Wood (NW end) and Tom Pooks Hill, all during 2023.


Some of the most productive and therefore richest 1km grid squares for lichenicolous fungi are at Anses Wood (SU2212): 70 over seven visits, Wood Crates/The Knowles (SU2608): 52 over six visits, Balmer Lawn (SU3003): 51 over four visits, Great Early Wood/Lucy Hill (SU2204): 51 over five visits, Bratley Wood (SU2208): 46 over three visits, Vinney Ridge (SU2505) 46 over three visits, Burley Old Enclosure (SU2404): 46 over five visits, Mark Ash Wood (SU2407): 46 over six visits, Fair Cross/Rushpole Wood (SU3009): 44 over three visits, Wooson's Hill (SU2507): 44 over four visits, Sloden Wood (SU2112): 42 over three visits and the Little Stubby Hat/Gutter Heath Complex (SU3010): 41 over three visits.

Notable species of LFs recorded on epiphytes in the New Forest (N&W)

(Sites north and west of the A35 and the A337 between Lyndhurst and Cadnam)

<i>Abrothallus cladoniae</i>	<i>Paraëpicoccum hypotrichynae</i>
<i>Abrothallus prodiens</i>	<i>Pronectria anisospora</i>
<i>Arthonia thelotrematis</i>	<i>Pseudophaeoisaria cladoniae</i>
<i>Biatoropsis hafellneri</i>	<i>Roselliniella atlantica</i>
<i>Briancoppinsia cytospora</i>	<i>Sphaerellothecium cinerascens</i>
<i>Chaenothecopsis retinens</i>	<i>Spirographa fusispora</i>
<i>Dacampia cyrtellae</i>	<i>Spirographa pyramidalis</i>
<i>cf. Didymocyrtis melanelixiae</i>	<i>Spirographa triangularis</i>
<i>Echinodiscus lesdainii</i>	<i>Stigmidium eucline</i>
<i>Endococcus apiciicola</i>	<i>Talpapellis beschiana</i>
<i>Enterographa brezhonega</i>	<i>Tremella conidiopunctelia</i>
<i>Everniicola flexispora</i>	<i>Tremella hypogymniae</i>
<i>Gyalectiphila pluriseptatum</i>	<i>Tremella lichenicola</i>
<i>Lecidella parasitica</i>	<i>Tremella parietinae</i>
<i>Lichenochora galligena</i>	<i>Tremella pertusae</i>
<i>Lichenostella griseofusca</i>	<i>Tremella ramalinae s. lat</i>
<i>Lichenosticta alcicornaria</i>	<i>Tremella tuckerae</i>
<i>Lichenostigma chlaroterae</i>	<i>Unguiculariopsis lettau</i>
<i>Muellerella lichenicola</i>	<i>Xenonectriella subimperspicua</i>
<i>Nesolechia oxyspora</i>	<i>Xenonectriella calabrica</i>
<i>Opegrapha thelotrematis</i>	

(Species in **bold** currently present in N&W only)

Conidiomata of *Tremella conidiopunctelia* on *Punctelia subrudecta* Photo © M. Putnam

Notable species of LFs recorded on epiphytes in the New Forest (S&E)

(Sites south and east of the A35 and the A337 between Lyndhurst and Cadnam)

<i>Abrothallus prodiens</i>	<i>Paraepicoccum hypotrichynae</i>
<i>Abrothallus usneae</i>	<i>Pronectria anisospora</i>
<i>Arthonia epiphyscia</i>	<i>Phacographa zwackhii</i>
<i>Biatoropsis hafellneri</i>	<i>Phaeospora everniae</i>
<i>Briancoppinsia cytospora</i>	<i>Skyttea gregaria</i>
<i>Buellia physciicola</i>	<i>Sphinctrina tubiformis</i>
<i>Burgoa moriformis</i>	<i>Spirographa pyramidalis</i>
<i>Ellisembia lichenicola</i>	<i>Spirographa triangularis</i>
<i>Endococcus apiciicola</i>	<i>Stigmidium subcladoniicola</i>
<i>Enterographa brezhonega</i>	<i>Tremella cladoniae</i>
<i>Gyalectiphila pluriseptatum</i>	<i>Tremella conidiopunctelia</i>
<i>Lecidella parasitica</i>	<i>Tremella hypogymniae</i>
<i>Lichenochora aipoliae</i>	<i>Tremella ramalinae s. lat</i>
<i>Lichenochora weilii</i>	<i>Tremella tuckerae</i>
<i>Lichenohendersonia physciicola</i>	<i>Taeniolella arthoniae</i>
<i>Lichenosticta alcicornaria</i>	<i>Xenonectriella subimperspicua</i>
<i>Minutoexcipula tuckerae</i>	<i>Xenonectriella calabrica</i>
<i>Minutophoma chrysophthalmae</i>	

(Species in **bold** currently present in S&E only)

A modern checklist of lichenicolous fungi on epiphytes in the New Forest

(e.g. 49 = abundance in 150, 1km squares studied; totals exceeding 120 most probably enjoy blanket coverage; notable taxa are listed by site and date)

Abrothallus bertianus: 49: on *Melanelia glabratula*, mostly on vertical tree surfaces, but also asexually as *Vouauxiomycetes*. Frequent.

Abrothallus cladoniae: Crows Nest Bottom, on *Cladonia polydactyla* (NAS), 08-2020. Rare.

Abrothallus microspermus: 139: on *Flavoparmelia caperata*. Abundant.

Abrothallus parmeliarum: Rufus Stone 10-2020, Denny Wood 01-2023, Vinney Ridge 02-2023, on *Parmelia saxatilis*. Rare.

Abrothallus parmotrematis (syn: *Vouauxiomycetes truncatus* auct. brit. p.p. (ana)): Wood Crates 03-2022, Brinken Wood 04-2022, Vereley Wood 05-2023, Ladycross (N) 03-2024, Bushy Bradley 03-2024, on *Parmotrema perlatum*. Rare.

Abrothallus prodiens: Wood Crates 10-2022 (NAS) & 12-2022 (different trees), Frame Wood 02-2023, Woosons Hill/Mark Ash Wood 04-2023, on *Hypogymnia physodes*. Rare.

Abrothallus usneae: Little Wood 08-2022, Burley Old Enclosure 01-2023, Fair Cross 01-2023, Tantany Wood (W) 03-2023, Frame Wood 04-2023, Bramshaw Wood CP 09-2023, Great Early Wood 11-2023, Holidays Hill 12-2023, Amberslade Bottom 01-2024, Whitebridge Hill 03-2024, on *Usnea: ceratina, cornuta* and *subfloridana*. Rare.

Acolium sessile (syn: *Cyphelium sessile*): 16: on *Pertusaria coccodes*. Occasional.

Actinocladium rhodosporum: Great Wood (Shepherds Gutter end) 08-2024, Vinney Ridge 09-2024, Mallard Wood 09-2024, Ober Water 09-2024, facultatively lichenicolous on *Fuscidea lightfootii*, *Pertusaria pertusa*, *Physcia aipolia*. Occasional though probably widespread.

Arthonia digitatae: 92: predominantly on *Cladonia polydactyla*, it can occur alongside *Milospium lacoizquetae* which is generally restricted to the edges of the squamules. Frequent to Abundant.

Arthonia epiphyscia: Frame Wood (N) 02-2023, Matley Wood (E-edge) 04-2023, on *Physcia tenella*. Rare.

Arthonia graphidicola: 11: on *Graphis scripta*, [NAS has 19 records of this species since 2000]. Uncommon. [At some sites in incredible abundance e.g. Ironhill Inclosure]

Arthonia invadens: 13: on *Schizotrema quercicola*. [NAS has recorded this species in 62 woods since 2000 based on his surveys of acid bark]. Occasional.

Arthonia ligniaria: Lichenicolous on *Evernia prunastri*, Eyeworth Wood 01-2022, Mark Ash Wood, 03-2022, Great Early Wood 03-2024, Ridley Wood (S) 04-2024, Moyles Court 05-2024. Rare.

Arthonia parietinaria: 33: *Xanthoria parietina*. Occasional.

Arthonia phaeophysciae: Slufters Enclosure (SW extension) 10-2022, Ober Corner 10-2023, Bushy Bradley 03-2024, Anses Wood 05-2024 (P. Cannon), Balmer Lawn 07-2024, on *Phaeophyscia orbicularis*; though a relatively common species, it is generally scarce in the Forest. Rare.

Arthonia thelotrematis: Amies Wood 07-2021, Lin Wood 07-2021, Stubbs Wood 06-2023, on *Thelotrema lepidinum*, [NAS has had this from four additional woods: Bramshaw Wood, Minstead Manor, Beaulieu River and Shave Wood]. Rare.

Arthrorhaphis aeruginosa: 12: on *Cladonia* spp. Uncommon.

Athelia arachnoidea: 14: mostly on *Xanthoria parietina* and *Physcia* spp. Uncommon.

Bachmanniomycetes punctum (syn: *Bachmanniomycetes uncialicola* (ana), *Phaeopyxis punctum*): epiphytic at Hincheslea Wood 10-2020, Brook Wood 12-2020, Wood Crates (E) 10-2021, Gritnam Wood 05-2022, Slufters Enclosure 01-2022, Bur Bushes 07-2023, Kings Hat 08-2023, on *Cladonia coniocraea*, *Cladonia macilenta*, *Cladonia polydactyla*. Occasional.

Biatoropsis usnearum: 22: on *Usnea* spp. Occasional.

Biatoropsis hafellneri: Slufters Enclosure (SW extension) 10-2022, Fair Cross 03-2017 (NAS), Malborough Deep 2008 (NAS), Ocknell Sling 12-2012 (NAS), Round Hill 2005 (NAS), Wood Crates 1998 (NAS), Woosons Hill/Mark Ash Wood 09-2018 (NAS), Tantany Wood 05-2023 (NAS), on *Usnea cornuta*. Rare.

Briancoppinsia cytospora (syn. *Phoma cytospora*): 7: on *Evernia prunastri*, *Hypogymnia tubulosa* and *Punctelia borreri*. Uncommon.

Bryostigma lapidicola (syn: *Arthonia muscigena*): First lichenicolous collection from twigs of *Crataegus*: Bramshaw Wood - March 2021; now known to be widespread throughout the Forest on *Lecanora barkmaniana*.

Buellia physciicola: Ober Corner 10-2023, on *Phaeophyscia orbicularis*. Rare.

Burgoa moriformis: Balmer Lawn 10-2022, South Weirs 11-2022, Holidays Hill 12-2023, Ridley Wood (S), on *Lecanora barkmaniana*, *Physcia tenella*, *Xanthoria parietina*. Rare.

Capronia hypotrachyna: 57: on *Hypotrachyna afrorevoluta*. Frequent.

Chaenothecopsis cf. australis: Frame Wood 2018, on *Dendrographa decolorans* (NAS). Rare.

Chaenothecopsis renitens: Eaves Hill 12-2017 (NAS), Shave Wood 02-2019 (NAS), Bignell Wood 07-2020 (NAS), Frame Wood 06-2021 (NAS), Frame Wood 07-2021 (NAS), on *Sporodophoron cretaceum*. Rare.

Ceratobasidium bulbillifaciens: Anses Wood 01-2020, on *Lecidella elaeochroma*. Rare.

Cladosporium licheniphilum: Amies Wood 8-2024, on *Xanthoria parietina*. Rare.

Cladophialophora parmeliae: 143: on *Hypotrachyna afrorevoluta*. Dominant.

Clypeococcum hypocenomyctis: 13: on *Hypocenomyce scalaris*. Uncommon.

Dacampia cyrtellae: Bratley Wood 06-2023, on *Lecania cyrtella*. Rare.

Didymocyrtis epiphyscia (syn. *Phoma physciicola*): 15: on *Physcia aipolia*. Uncommon.

cf. *Didymocyrtis melanelixiae*: New Forest Gate House 06-2024, on *Parmelia sulcata*. Rare.

Didymocyrtis ramalinae: 40: on *Ramalina farinacea*, *Ramalina fastigiata*. Occasional.

Didymocyrtis slaptoniensis (syn: *Polycoccum slaptoniensis*): 40: on *Xanthoria parietina*. Occasional.

Echinodiscus lesdainii: Bratley Wood 06-2023, on *Lecania cyrtella*. Rare.

Ellisembia lichenicola: Park Pale 12-2024 (Paul Cannon), with *Gyalectiphila pluriseptata*, on *Gyalecta carneola*. Rare but possibly under recorded.

Endococcus apicicola: Anses Wood 12-2019, Little Wood 08-2022, Fair Cross 01-2023, Tantany Wood 02-2023, Frame Wood [SW] 02-2023, Great Early Wood 11-2023, Frame Wood [SSW] 12-2023, Ridley Wood (N) 04-2024, Vinney Ridge 09-2024, on *Usnea cornuta*, *Usnea* sp. Rare.

Endococcus ramalinarius: 39: on *Ramalina farinacea* and *Ramalina fastigiata*. Occasional-frequent, especially in the east.

Enterographa brezhnega: Great Wood, Bramshaw 2011 & 2019 (NAS), Frame Wood 2018, 2021, & 2022 (NAS), Hollands Wood 2016 (NAS), Little Wood 2021 (NAS), Ladycross area 2020 (NAS), Sunny Bushes 2017 (NAS), on *Coenogonium luteum*. Rare.

Epicladonia sandstedii: 47: on *Cladonia* spp. Occasional-Frequent.

Erythricium aurantiacum (syn *Marchandiobasidium aurantiacum*): 105: mostly on *Physcia tenella*. Abundant.

Everniicola flexispora: Bratley Wood 06-2023, on *Evernia prunastri*. Rare.

Gyalectiphila pluriseptata (syn: *Refractohilum pluriseptatum*) Buskets Wood 09-2024 (NAS), Vinney Ridge 09-2024, Great Early Wood 09-2024, Bartley Green 09-2024 (NAS), Shave Wood 09-2024 (NAS), Wick Wood 09-2024 (NAS), Great Stubby Hat 09-2024 (NAS), Brockis Hill 09-2024 (NAS), on *Gyalecta carneola*, colonies minuscule but probably widespread.

Homostegia pigottii: 144: on *Parmelia saxatilis*. Dominant.

Illosporiopsis christiansenii: 102: *Lecidella elaeochroma*, *Parmelia sulcata*, *Physcia aipolia*, *Physcia tenella* and various other bark crusts. Abundant.

Laetisaria lichenicola: 85: on *Physcia tenella*. Frequent.

Lecidella parasitica: Denny Wood 04-2016 (NAS), Rushpole Wood 04-2016 (NAS), Stricknage Wood 05-2016 (NAS), Bartley Green 05-2016 (NAS), The Ridge 06-2016 (NAS) Woosons Hill 09-2018 (NAS), Mallard Wood 05-2020 (NAS), Burley 08-2020 (NAS), Mark Ash Wood 08-2022 (NAS), on *Pyrrhoscopora quernea*. Uncommon.

Lichenochora aipoliae: Balmer Lawn 10-2022, Shave Wood (E) 10-2022, Gutter Heath 03-2023, Queen North Wood 08-2023, Emery Down 01-2024, Ladycross (N), Ridley Wood (S) 04-2024, on *Physcia aipolia*. Occasional.

Lichenochora galligena: Wood Crates 04-2024, on *Physcia tenella*. Rare.

Lichenochora hyperphysciae: South Weirs 11-2022, Lyndhurst 05-2023, Foulford 10-2023, Bushy Bradley 03-2024, Holmsley 04-2024, Balmer Lawn 07-2024, on *Hyperphyscia adglutinata*. Rare.

Lichenochora obscuroides: 23: on *Phaeophyscia orbicularis*, *Physcia aipolia*, *Physcia tenella*. Occasional.

Lichenochora physciicola: 23: on *Physcia aipolia*, *Physcia tenella*. Occasional.

Lichenochora weillii: Ober Corner 10-2023, Moyles Court 05-2024, on *Physconia grisea*. Rare.

Lichenocionium erodens: 120: on *Evernia prunastri*, *Flavoparmelia caperata*, *Hypogymnia physodes*, *Hypotrachyna afrorevoluta*, *Parmelia saxatilis*, *Parmelia sulcata*, *Pertusaria pertusa*, *Physcia tenella*, *Punctelia subrudecta*, *Usnea* spp. Dominant.

Lichenocionium lecanorae: Winding Stonard 10-2021, Brockenhurst 06-2023, on *Lecanora hypocarpa*, *Rinodina sophodes*. Rare.

Lichenocionium lichenicola: 30: on *Physcia tenella*. Occasional.

Lichenocionium pyxidatae: Burley Old Enclosure 08-2019, Wood Crates 08-2019, Berry Wood 10-2019, Amies Wood 07-2021, Long Beech Hill 10-2023, Fletchers Thorns 12-2023, on *Cladonia ramulosa*; also Mark Ash Wood 2023 on *Cladonia polydactyla* (NAS). Uncommon.

Lichenocionium usneae: Winding Stonard 10-2021, Homy Ridge 08-2023, Shoot Wood 10-2023, Ober Corner 10-2023, Butts Lawn (Brockenhurst) 11-2023, Amberslade Bottom 01-2024, Bushy Bradley 03-2024, Buskets Wood (E) 04-2024, Great Early Wood 09-2024, on *Usnea subfloridana* and apothecia of *Ramalina fastigiata*. Uncommon.

Lichenocionium xanthoriae: Mallard Wood 05-2023, Shoot Wood 10-2023, Ober Corner 10-2023, Park Hill 02-2024, on *Xanthoria parietina*. Rare.

Lichenodiplis lecanorae: Stubbs Wood 09-2019, Queens Bower 10-2020, Wick Wood 05-2022, Bratley Wood 06-2023, Castle Hill 07-2023, on *Buellia griseovirens*, *Hypogymnia physodes*, *Hypogymnia tubulosa*, *Lecanora expallens*, *Mycoblastus caesius*. Rare.

Lichenodiplis pertusariicola: Little Stubby Hat 10-2019, Mallard Wood 05-2023, on *Pertusaria leioplaca*. Rare.

Lichenohendersonia physciicola: Ober Corner 10-2023, on *Physconia grisea*. Rare.

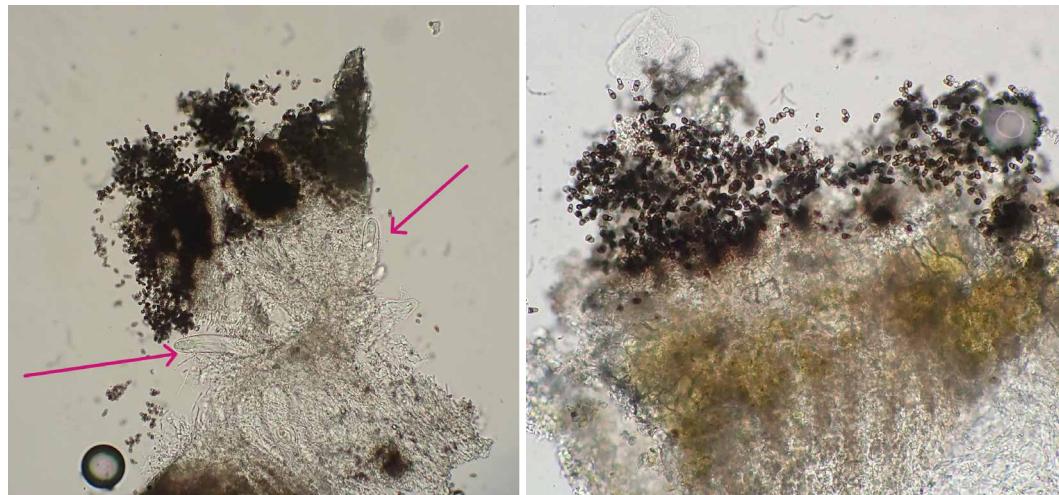
Lichenostella griseofusca: Anses Wood 01-2020, Amies Wood 08-2024, on *Lecanora hypocarpa*. Rare.

Lichenosticta alcicornaria: Great Early Wood 10-2020, Wood Crates (E) 10-2021, Wormstall Wood 12-2021, Lucy Hill 05-2022, Picket Corner 07-2023, Crows Nest Bottom 07-2023, Freeworms Hill 07-2023, Homy Ridge 08-2023, Sloden Wood (E) 08-2023, Tom Pook's Hill 08-2023, Queen North Wood 08-2023, Queen Bower 10-2023, Stinking Edge Wood 03-2023, Anses wood 05-2024, Jack's Wood 06-2024, Great Wood 08-2024, on *Cladonia caespiticia*, *Cladonia coniocraea*, *Cladonia* (unid.) Occasional.

Lichenostigma alpinum: 68: on *Lepraria amara*. Frequent.

Lichenostigma chlaroterae: Bignell Wood 07-2024, Amies Wood 08-2024, Vinney Ridge 09-2024, Great Early Wood 09-2024, Ober Water 09-2024, on *Lecanora hypocarpa*, *Lecanora chlarotera* agg. Occasional.

Lichenostigma maureri: Brockenhurst village 04-2025, on *Lecidella elaeochroma*, recent addition.


Lichenotubeufia heterodermiae (syn: *Tubeufia heterodermiae*): 60: on *Physcia aipolia*, *Physcia tenella*. Frequent.

Marchandiomyces corallinus (syn. *Illosporium corallinum*): 65: on *Evernia prunastri*, *Hypogymnia physodes*, *Hypotrachyna afrorevoluta*, *Parmelia saxatilis*, *Parmelia sulcata*, *Pertusaria coccodes*, *Pertusaria pertusa*, *Punctelia subrudecta*, *Ramalina farinacea*, *Ramalina fastigiata* and *Usnea* spp. Frequent.

Milospium graphideorum: 37: on *Lecanographa lyncea* and *Dendrographa decolorans* but much more widespread than these records show. Recorded from 9 woods since 2000 (NAS) Frequent.

Milospium lacoizquetae: 66: mostly on *Cladonia polydactyla*, (see *Arthonia digitatae*) Frequent.

Minutoexcipula tuckerae: Little Stubby Hat (2 trees: 10-2019), Fair Cross 01-2023, on *Pertusaria pustulata*, New to Europe. Very rare.

Minutoexcipula tuckerae conidiomata (sporodochia) growing on *Pertusaria pustulata*
(Arrows indicate asci of host) Photos © M. Putnam

Minutophoma chrysopthalma: Ferny Crofts 11-2018 (NAS), Stubbs Wood 01-2019, Little Wood 08-2022, on *Chrysotrichia flavovirens*; also Avon Water 2002 (on herbarium specimen), Eyeworth Wood 2020, Ladycross area 2021, Knightwood Inclosure 2022 (NAS). Rare.

Monodictys epilepraria 54: on *Lepraria finkii*. Frequent.

Muellerella lichenicola: Vereley Hill Wood 05-2023, on *Caloplaca cerinella*. Rare in the Forest.

Nectriopsis physciicola: Anses Wood 01-2020, Lucas Castle 02-2020, Pinnock Wood/Linford Brook 03-2020, Pigsty Hill 02-2022, on *Buellia griseovirens*, *Lepra amara*, *Ochrolechia androgyna*, *Pertusaria coccodes*, *Phlyctis argena* and *Xanthoria parietina*. Occasional.

Nectriopsis rubefaciens (syn. *Trichonectria rubefaciens*): 42: on *Evernia prunastri*, *Flavoparmelia caperata*, *Parmelia sulcata*, *Ramalina farinacea* and *Usnea cornuta*; judging from the number of occurrences on *Ramalina* and *Usnea*, there may be more than one species involved, see Etayo & López de Silanes (2024). Frequent.

Nesolechia oxyspora: Shepherds Gutter 03-2019, Anses Wood 01-2020, Coalmeer Gutter 11-2020, on *Parmelia saxatilis*. Rare.

Opegrapha thelotrematis: Yew Tree Hill, Buskets Wood 12-2008 (NAS), High Corner Wood 03-2020 (NAS), Amies Wood 07-2020 on *Thelotrema lepidinum*; also Mallard Wood 2016 & 2021, Stonard Wood 2020 (NAS). Rare.

Paraëpicoccum hypotrachynae: Vereley Wood 05-2023, King's Hat (Hollands Wood) 06-2024, Vinney Ridge 09-2024, on *Hypotrachyna afrorevoluta*. Very rare.

Paranectria oropensis: 18: on *Cladonia* spp., *Lepraria incana*, *Physcia tenella*, and on indeterminate lichen crusts on N-facing bark of young thorn trees. Occasional.

Phacographa zwackhii (syn. *Opegrapha zwackhii*): Beechen Lane 07-2020 (NAS), Bramshaw Wood 07-2020 (NAS), Stricknage Wood 2023 (NAS), on *Phlyctis argena*. Rare.

Phacothecium varium (syn. *Opegrapha physciaria*): Ivy Wood 04-2021, Wood Crates (W) 03-2022, Barrow Moor 04-2022, Balmer Lawn (E) 10-2022, Vereley Wood 05-2023, Vereley Hill Wood 05-2023, Anses Wood 07-2023, Foulford 10-2023, Holmsley 04-2024, Moyles Court 05-2024, Burbush 05-2024, on *Xanthoria parietina*. Occasional.

Pseudophaeoisaria cladoniae: Burley Old Enclosure 03-2020, on *Cladonia polydactyla* under a large heap of decomposing wood, Type locality. Very rare.

Phaeospora everniae: Frame Wood 12-2023, Great Early Wood 03-2024, on *Evernia prunastri*. Rare.

Plectocarpon lichenum: Bramshaw Wood 12-2000 (NAS) Possibly extinct in the Forest. Previously at Judd's Hill on *Lobaria pulmonaria*, but tree not found during last search (NAS).

Pronectria anisospora: Anses Wood 12-2019, Lin Wood 07-2021, Eyeworth Woods (S) 10-2020, Mark Ash Wood 03-2022, Barrow Moor 04-2022, Frame Wood 09-2022, Rushpole Wood 01-2023, Stubbs Wood 02-2023, Standing Hat 06-2023, Kings Hat 08-2023, Bramshaw Wood CP 09-2023, Great Early Wood 11-2023, Frame Wood [SSW] 12-2023, Holmsley 04-2024, Vinney Ridge 09-2024, on *Hypogymnia physodes*. Occasional.

Pronectria oligospora: 144: on *Punctelia subrudecta*, Dominant.

Pronectria pertusariicola: Anses Wood 01-2020, Linford Brook 03-2020, Queen Bower 10-2020, Ivy Wood 04-2021, Redshoot Wood 06-2021, The Knowles (S) 11-2022, The Knowles (N) 12-2022, Balmer Lawn (W) 11-2022, Little Stubby Hat 04-2023, Park Hill 02-2024, Wood Crates 04-2024, on *Lepra amara*, *Pertusaria pertusa*; on *Fraxinus*, (more rarely on *Quercus*, *Crataegus* and *Fagus*). Occasional.

Psammina stipitata: Little Stubby Hat 10-2019. Rare.

Rhymbocarpus cruciatus (syn. *Skyttea cruciata*): South Weirs 10-2011 (NAS), 11-2022, on *Diploicia canescens*. Rare.

Randlanea usneicola: Great Early Wood 12-2023, on *Usnea subfloridana*. Rare.

Reichlingia zwackhii (syn. *Arthonia zwackhii*): Mark Ash Wood 07-2019, Woosons Hill 08-2021 & 01-2022, on *Phlyctis argena*. [NAS has recorded this species from 22 woods since 2000 and frequently becomes an independent lichen]. Occasional.

Roselliniella atlantica: Mark Ash Wood/Woosons Hill 03-2022, on *Hypogymnia tubulosa*. Rare.

Roselliniella cladoniae: 29: on *Cladonia* spp.. Occasional.

Roselliniopsis tartaricola: 75: on *Lepra amara* and *Varicellaria hemisphaerica*. Frequent.

Sclerococcum parasiticum: 54: on *Pertusaria hymenea*. Frequent.

Skyttea gregaria: Fair Cross 05-2023, on *Violella fucata*. Rare

Skyttea nitschkei: 108: on *Thelotrema lepadinum*. Abundant.

Sphaerellothecium cinerascens: Nomansland 12-2018 (NAS), Vinney Ridge 01-2023 (BLS), Old Burley Enclosure 01-2023, Buskets Wood 09-2023 (NAS) on *Cladonia parasitica*, *Cladonia digitata*. Rare.

Sphinctrina turbinata: 38: on *Pertusaria pertusa*. Frequent.

Sphinctrina tubiformis: Little Stubby Hat (NAS) 12-2014, South Oakley Enclosure (NAS) 08-2020, Anses Wood (NAS) 10-2022, Little Stubby Hat [4 trees] 04-2023, on *Pertusaria pustulata*. Rare.

Spirographa vermiciformis: (syn. *Spirographa ciliata* s.lat): Ridley Wood (N) 04-2024, on *Lepra amara*; 'ciliata' group. Rare.

Spirographa fusisporella s. lat.: Great Wood 03-2020, Black Bush 08-2021, Wood Crates (E) 10-2021 Denny Wood 12-2022, Frame Wood 12-2023, Brockenhurst 12-2023, Holidays Hill 12-2023, Moyles Court 05-2024, Ogden's 05-2024, Balmer Lawn 07-2024, Mallard Wood 09-2024, on *Evernia prunastri*, *Lecanora albella*, *Lepra amara*, *Lepra multipuncta*, *Parmelia sulcata* and *Pertusaria pertusa*. Occasional.

Spirographa lichenicola (syn. *Cornutispora lichenicola*): 33: hosts: *Cladonia macilenta*, *Evernia prunastri*, *Flavoparmelia caperata*, *Hypogymnia physodes*, *Hypocenomyce scalaris*, *Lecanora albella*, *Lecanora carpinea*, *Lecanora pallida*, *Lepra multipuncta*, *Parmotrema perlatum*, *Pertusaria pertusa*, *Platismatia glauca* and *Punctelia subrudecta*, *Ramalina farinacea* (soralia), *Ramalina fastigiata* (apothecia.). Frequent.

Spirographa pyramidalis (syn. *Cornutispora pyramidalis*): Anses Wood 01-2020, Knightwood Oak 11-2021, Frame Wood 09-2022, Bramshaw Wood Car Park 09-2023, Great Early Wood 03-2024, Buskets Wood (W) 04-2024, King's Hat 06-2024, Great Wood 08-2024, Mallard Wood 09-2024, on *Flavoparmelia caperata*, *Hypotrachyna afrorevoluta*, *Parmelia sulcata* and *Platismatia glauca*. Rare.

Spirographa triangularis (syn. *Cornutispora triangularis*): 21: on *Pertusaria pertusa* and *Pertusaria hymenea*. Occasional.

Stictographa lentiginosa (syn. *Melaspilea lentiginosa*): 44, on *Phaeographis dendritica*; also 42 woods since 2000 (NAS). Frequent.

Stigmidium eucline: Burley Old Enclosure 04-2019, on *Lepra amara*. Rare.

Stigmidium microspilum: 20, on *Graphis scripta*. Occasional.

Stigmidium subcladoniicola: Denny Wood 01-2023 (NAS), Tantany Wood 02-2023, on *Cladonia parasitica*, *Cladonia polydactyla*. Rare.

Taeniolella arthoniae: Ferny Crofts 02-2020 (NAS), Eaves Hill 03-2021 (NAS), The Ridge 03-2021 (NAS), Brockis Hill 03-2023, Mallard Wood 05-2023, Bur Bushes 07-2023, Long Beech Hill 08-2023, Fletchers Thorns 12-2023, on *Dendrographa decolorans*, *Lecanactis abietina*. Rare but overlooked.

Taeniolella delicata: Frame Wood (E) 10-2022, Avon Water 11-2022, Rushpole Wood 02-2023, Frame Wood (SW) 04-2023, Park Hill 02-2024, Balmer Lawn 07-2024, on *Candelaria concolor*, *Evernia prunastri*, *Lecanora chlorotera* s.lat, *Loxospora elatinum*. Occasional.

Taeniolella cf. hawksworthiana: Mark Ash Wood 03-2020 and (NAS), Emery Down 01-2024, Ladycross area 03-2024; also (NAS) at Buskets Wood 2020, Berry Wood 2020, Knightwood Enclosure 2021, Hincheslea Wood 2019, Bramshaw Wood 2022, Vinney Ridge 2023, on *Phaeographis dendritica*; possible anamorph of *Stictographa lentiginose*. Rare.

Taeniolella punctata: 15, on *Graphis elegans*, *Graphis scripta*. Occasional.

Taeniolella phaeophysciae: 22, on *Phaeophyscia orbicularis*. Occasional.

Taeniolella toruloides: 87, on *Thelotrema lepadinum*. Abundant.

Talpapellis beschiana (syn. *Taeniolella beschiana*): Ochnell Inclosure 12-2024, on *Cladonia coniocraea*. Rare.

Telogalla olivieri: 47, on *Xanthoria parietina*. Frequent.

Tremella cladoniae: Fletchers Thorns 12-2023, on *Cladonia coniocraea*; records previously assigned to *Zyzygomyces bachmannii* may also include this species as both can occur on the same host. Rare

Tremella conidiopunctelia: Amies Wood 07-2020, Mark Ash Wood 03-2022, Lucy Hill 05-2022, Denny Wood 08-2022, Standing Hat 06-2023, Castle Hill 07-2023, Bur Bushes 07-2023, Gorley Bushes 08-2023, Woodside Bottom 09-2023, Nomansland 09-2023, Foulford 10-2023, Amberslade Bottom 01-2024, Buskets Wood (E) 04-2024, Burbush 05-2024, Turf Hill 07-2024, Bignell Wood 07-2024, on *Punctelia subrudecta*. Occasional.

Tremella hypogymniae: Wood Crates 11-2022, Denny Wood 01-2023, Mark Ash Wood 04-2023, Frame Wood (SW) 04-2023, Rushpole Wood (SW) 01-2023, Fair Cross 05-2023, Long Beech Hill 08-2023, Bramshaw Wood CP 09-2023, Great Early Wood 11-2023, Buskets Wood (W) 04-2024, New Forest Gate Ho. 06-2024, Vinney Ridge 09-2024, on *Hypogymnia physodes*. Occasional.

Tremella lichenicola: Wood Crates 12-2022, Vinney Ridge (BLS) 01-2023, on *Violella fucata*. Rare.

Tremella parietinae (syn. *Tremella caloplacae* s.lat): Moyles Court 05-2024, on *Xanthoria parietina*. Rare.

Tremella pertusae: Park Hill 10-2017 (NAS), Burley Old Enclosure 11-2017 (NAS) and on two further trees 07-2024, Ridley Wood (S) 04-2024, Vinney Ridge 09-2024, Mallard Wood 09-2024, on *Pertusaria pertusa*. Rare.

Tremella pertusariae: [Historically 24 records from 1967 to 02-06-2021], 44 since, on *Pertusaria hymenea*. Frequent.

Tremella ramalinae s. lat: Ober Corner 11-2023, Anses Wood 11-2023, Brockenhurst 12-2023, Amberslade Bottom 01-2024, Ochnell Inclosure 01-2024, Bushy Bradley 03-2024, Stinking Edge Wood 03-2024, Buskets Wood (W), Holmsley 04-2024, Moyles Court 05-2024, Ogden's 05-2024, Turf Hill 07-2024, Balmer Lawn 07-2024, Mallard Wood 09-2024, on *Ramalina fastigiate*. Occasional.

Tremella tuckerae: Denny Wood 12-2022, Minstead Cricket Pitch 04-2023, Fair Cross 05-2023, Mallard Wood 05-2023, Queen's North Wood 08-2023, (these, the first five of 20 sites), *Ramalina farinacea*, *Ramalina fastigiate*. Occasional.

Trimmatostroma vandenboomii: Brockenhurst village 04-2025, on *Lecidella elaeochroma*, recent addition.

Unguiculariopsis lesdainii: Holm Hill 10-2023, on *Lecanora saligna* on felled *Ilex* stump. Rare.

Unguiculariopsis lettaui: Anses Wood 12-2019, Eyeworth Wood (S), 10-2020, Amberslade Bottom 01-2024, Holmsley 04-2024, Moyles Court 05-2024, Ogden's 05-2024, on *Evernia prunastri*. Rare.

Unguiculariopsis thallophila (syn. *Skyttea thallophila*): 21: on *Lecanora hypocarpa*. Occasional.

Vouauxiella lichenicola: 94: on *Lecanora chlorotera*, *Lecanora hypocarpa*. Frequent.

Xanthoriicola physciae: 124: on *Xanthoria parietina*. Dominant.

Xenonectriella calabrica: 32: on *Pertusaria pertusa* on *Fagus*; occasional but frequent in the north of the Forest.

Xenonectriella subimperspicua: Hincheslea Wood 10-2020, Rufus Stone 10-2020, Woodford Bottom 04-2021, Castle Hill 07-2023, Bratley Water 07-2023, Freeworms Hill 07-2023, Gorley Bushes 08-2023, Foulford 10-2023, Ober Corner 10-2023, Brockenhurst 12-2023, Park Hill 02-2024, Buskets Wood (E) 04-2024, on *Hypotrachyna afrorevoluta*, *Parmelia sulcata*. Occasional.

Zyzygomyces aipoliae: Pinnock Wood/Linford Brook 03-2020, Balmer Lawn 10-2022, Shave Wood (E) 10-2022, Eaves Hill 02-2023, Queen North Wood 08-2023, Ober Corner 10-2023, Emery Down 01-2024, Park Hill 02-2024, Buskets Wood (E) 04-2024, Buskets Wood (W) 04-2024, on *Physcia aipolia*. Occasional.

Zyzygomyces bachmannii (syn. *Heterocephalacria bachmannii*): 30: on *Cladonia* sp, fallen timber and old tree stumps; Most records from *Cladonia parasitica*, and though not reported as a known host by Diederich (2022) it has since been recorded from Spain on *Cladonia parasitica* by Etayo & López de Silanes (2024). Occasional.

Zyzygomyces physciacearum: (syn. *Heterocephalacria physciacearum*): 146: on *Physcia aipolia*, *Physcia tenella*. Dominant.

Note: There are also several unidentified species, the most obvious of these is a "Didymocyrtis [New Forest]": 30+, on *Hypotrachyna afrorevoluta*, Frequent.

Site list

All sites **SU** unless otherwise stated; nos in open brackets () = number of visits, square brackets [] = section of larger area of woodland surveyed.

Amies Wood (2) 1909, Anderwood Cottage (1) 2405, Anses Wood (6) 2212, Appleside Lawn (1) 1809, Avon Water- Wootton Coppice (1) 2499, Balmers Lawn [W] (1) 3003, Balmers Lawn [E] (2) 3003, Barrow Moor (1) 2506, Berry Wood (2) 2105, Bignell Wood (1) 2813, Bistern Close – Burley Rocks (1) 2203, Black Bush (1) 2515, Black Knowl (1) 0329, Bramble Hill House to Bramshaw (1) 2615, Bramshaw Wood: incl. Pipers Wait to Bramshaw Enclosure (3) 2516, Bramshaw Wood [S] (1) 2516, Bramshaw Wood CP (1) 2517, Bratley Water (1) Bratley Wood (1) 2208, Bratley Wood - N of road (1) 2208, Bratley Wood – NW end (1) 2208, Brinken Wood (1) 2705, Brockenhurst (1) 3002, Brockis Hill (1) 2911, Brook Wood (2) 2614, Broom Hill (1) 2614/15, Bur Bushes (1) 2116, Burley Old Enclosure (5) 2404, Burley Outer Rails (1) 2305, Bushy Bradley (1)

2208, Buskets Wood [E] (1) 3211, Buskets Wood [W] 3111, Castle Hill, Burley Street (1) 1903, Coalmeer Gutter (1) 2612, Crows Nest Bottom (2) 2416, Deazole Wood (1) 2617, Denny Wood (1) 3305, Denny Wood (2) 3306, Eaves Hill (2) 3011, Emery Down (1) 2808, Eyeworth Wood (2) 2215, Eyeworth Wood (2) 2214, Ferny Crofts (1) 3605, Fletchers Thorns 2804, Footbridge – Holly Hatch Cottage (1) 2112, Foulford (1) 1805, Frame Wood [E] (1) 3503, Frame Wood [N] (1) 3503, Frame Wood [SW] (1) 3503, Frame Wood [SSW] (1) 3502, Freeworms Hill (1) 2212, Gorley Bushes (1) 2023, Great Early Wood (2) 2204, Great Wood (2) 2515, Gritnam Wood (1) 2806, Gutter Heath (1) 3010, High Corner Wood (1) 1910, Hincheslea Wood (1) 2700, Hollands Wood (1) 3004, Hollands Wood (1) 3003, Holm Hill (1) 2602, Holmsley (1) 2201, Homy Ridge (1) 2315, Howen Bushes (2) 2314, Ivy Wood (1) 3102, Jacks Wood (1) 3103, Janesmoor Plain (1) 2413, Judd's Hill, Bramshaw (1) 2616, King's Hat (Beaulieu) (1) 3805, King's Garn Gutter (1) 2913, King's Hat/ Spanyards Hole (3) 3005, Knightwood Oak (1) 2606, Lin Wood (1) 18.19/09, Linford Brook/ Pinnock Wood (1) 18.19/07, Ladycross (North) (1) 3303, Little Stubby Hat (3) 3010, Little Wood, Hawkhill (1) 3502, Long Beech Inclosure/Hill (2) 2512, Long Brook/Highland Water confluence (1) 2409, Lucas Castle (2), 2410, Lucy Hill (1) 2204, Mallard Wood (2) 3209, Mark Ash Wood, Mark Ash Wood (2) 2407, Mark Ash Wood (1) 2407/2507, Mark Ash Wood, New Forest Gate House (1) 2706, North of Church Moor (1) 2407, North from Woosons Hill (1) 2407, Mark Ash Wood (NW) (1) 2407, Matley Wood (2) 3307, Moyles Court (2) 1608, Ober Corner (1) 2803, Ocknell Enclosure (1) 2311, Ogden's (1) 1812, Park Hill (1) 3106, Picket Corner (1) 2216, Pig Bush [N] (1) 3604, Pig Bush [S] (1) 3604, Pigsty Hill/Devils Den (1) 2099, Pinnock Wood (1) 18/19-07, Plain Green (1) 3010, Puckpits Enclosure (1) 2909, Queen Bower (2) 2804, Queen North Wood (1) 2313, Redshoot Wood (3) 1808, Ridley Wood (1), 2005, Ridley Wood [N] (1) 2006, Ridley Wood [S] (1) 2005, Rockham Wood (W) (1) 2013, Rufus Stone (1) 2712, Rushpole Wood (Central) (1) 3009, Rushpole Wood [Fair Cross] (2), 3009, Rushpole Wood [SW] (1) 3009, Shave Wood (1) 2912, Shave Wood [E] (1) 2912, Shepherds Gutter (1) 2615, Shoot Wood – Burley (1) 2303, Sloden Wood [S] (1) 2112, Sloden Wood [Enclosure] (2) 2112, Sloden Wood [E] (1) 2112, Slufts [SW extension] (2) 2209, South Bentley Wood (1) 2312, South Weirs (1) 2801, Spaniards Hole/Kings Hat (2) 3005, Standing Hat (1) 3103, Stinking Edge Wood (1) 2207, Stonard Wood (1) 2510, Stony Moors/Pigsty Hat (2) 2199, Stricknage Wood (2) 2612, Stubbs Wood (2) 3603, Stubbs Wood [S] (1) 3602, Tantany Wood [Open pasture] (1) 3603, Tantany Wood [W] (1) 3603, The Knowles [N] (1) 2608, The Knowles [S] 2608, Tom Pook's Hill (1) 2512, Turf Hill (1) 2102, Vereley Farm/ Mill Lawn Brook (1) 2005, Vereley Hill (1) 1904, Vereley Wood, 1905, Vinney Ridge (2) 2505, Warwick Slade (1) 27.06/07, Whitebridge Hill (1) 3109, Whitley Wood (1) 2905, Wick Wood (1) 2609, Winding Stonard (1) 2410, Wood Crates [E] (2) 2708, Wood Crates [W] (4) 2608, Woodside Bottom/ Nomansland (1) 2517, Woodford Bottom (1) 1911, Wooson's Hill (5) 2507, Wormstall Wood (1) SZ3598.

I thank Neil Sanderson for his kind support and endeavours during this project.

References

Diederich, P., A. M. Millanes, M. Wedin & J. D. Lawrey. (2022) Flora of Lichenicolous Fungi, Vol. 1, *Bacidiomycota*. National Museum of Natural History, Luxembourg, 351pp.

Diederich, P., D. Ertz, U. Braun. (2024) Flora of Lichenicolous Fungi, Vol. 2, *Hyphomycetes*. National Museum of Natural History, Luxembourg, 544pp.

Etayo, J. & López de Silanes (2024) Contribution to the Study of Lichenicolous Fungi from northwest Iberian Peninsula (León and Lugo Provinces). *J. Fungi*, 10(1), 60. In: Special Issue Lichen Forming Fungi—in Honour of Prof. Ana Rosa Burgaz.

Giavarini V.J. (2022) Finding lichenicolous fungi on epiphytes in the New Forest. *Bull. British Lichen Society* 130: 30-34.

Gilbert O. L. (2000) *Lichens*. The New Naturalist Library. London: Harper Collins.

Hawksworth, D.L. (1979) The lichenicolous Hyphomycetes. *Bull. Br. Mus. nat. Hist., Bot.* 6:183-300.

Hawksworth, D.L. (1981) The lichenicolous Coelomycetes. *Bull. Br. Mus. nat. Hist., Bot.* 9:1-98.

Hawksworth, D.L. (1983) A key to the lichen-forming, parasitic, parasympbiotic, and saprophytic fungi occurring on lichens in the British Isles. *Lichenologist*, 15:1-44.

Hawksworth, D.L. (2003) The lichenicolous fungi of Great Britain and Ireland: an overview and annotated checklist. *Lichenologist* 35(3): 191-232.

Hawksworth, D.L. (2004) Fungi living on lichens: a source of unexplored diversity. *British Wildlife*. 15:192-199.

Rose, F. & James, P. W. (1974) Regional studies on the British lichen flora 1. The corticolous and lignicolous species of the New Forest, Hampshire. *Lichenologist*, 6: 1-72.

Sanderson (2010) Chapter 9 Lichens. In: *Biodiversity in the New Forest* (ed. A. C. Newton 84-III). Newbury, Berkshire; Pisces Publications.

Sanderson, N.A. (2017) The New Forest Heathland Survey 2011-2015. For Natural England, Forest Enterprise and The National Trust.

Sanderson, N.A. (2024) New Forest SSSI Lichen Site Dossier. For Natural England.

Vince Giavarini
v.giavarini@sky.com

Mighty mites

Over 80 species of lichenivorous oribatid mites (acari) are known to be associated with lichens; the relationship ranges from casual to highly dependent. At least 25 species complete their life cycle in association with thalli (Seyd & Seaward, 1984).

It has been suggested that, on a world scale, mites may be the main consumers of lichens. Some eat the whole lichen, others just parts, like the ascii and spores. The mites are in turn eaten by carnivores such as *Hemiptera* (aka bugs). These in turn may be eaten by birds. In this way, mite-infested lichens support a large food chain. Some acari are night active and some mainly day active. In the active phase they graze for approximately 6 hours after which they rest.

And you may find evidence of them under your microscope! Mite faecal pellets can be collected on sticky tape such as those in Fig. 1a, from the surface of a white crustose saxicolous lichen. Fig. 1c is a smaller pellet found on bark. It is a little broken, showing some algal content. A squash of the pellets revealed spores and algal material, but no structure: just brown, 1-septate, ellipsoid, slightly curved spores (ca. 23 μm x 13 μm) and a chlorococcoid photobiont. The closest matching lichen was the corticolous *Amandinea punctata* – on trees over several metres away. This posed the question: how did these pellets, containing a corticolous lichen primer kit, end up on a wall so far away from the nearest bark? Time for some research! Some clues were found in a report from 2002.

Fig. 1 Acari faecal pellets and their content. (a) Pellets (ca. 170 μm x 120 μm) collected on sticky tape from the surface of a crustose saxicolous lichen; insert shows the pellets on the tape. (b) The contents of these pellets including photobiont and 1-septate spores of the corticolous *Amandinea punctata*. (c) A smaller pellet isolated from bark, broken open and showing the peritrophic envelope and algal contents

Rosmarie Honegger's group in Switzerland has studied the interactions of *Xanthoria parietina* and its acarid mites in great detail. *X. parietina* does not produce vegetative propagules containing both photobiont and mycobiont, such as soredia, isidia, blastidia, or thallus fragments. It relies instead on sexual reproduction. To ensure this works, it is also self-fertile, homothallic, and does not need a partner to produce viable apothecia. However, it still does have to re-establish the symbiotic state at each reproductive cycle.

Its compatible photobiont is the alga *Trebouxia arboricola* which is relatively rare in the free state.

Honegger's team tested the theory that mites could act as vectors of photobiont cells, by examining faecal pellets from mites that had been fed on *X. parietina* (Meier *et al.*, 2002). They collected *X. parietina* thalli and isolated two lichenivorous mites which they fed *in vitro* on a diet of *X. parietina*. These mites showed a preference for lobe margins and the hymenial, subhymenial and algal layers of the apothecia. Neither ate the lower cortex or rhizines. Using simple bright field microscopy, they found intact ascospores and viable photobiont cells in the pellets. They went on to culture the ascospores and photobiont cells, do DNA sequencing, scanning EM work and much more.

But what becomes of the ingested lichen? A model of the acarid digestive system is shown in Fig. 2. The mouthparts (chelicerae) cut or scrape off pieces of lichen, mix them with saliva and move them into the oesophagus. There is no further comminution of the food (no gizzard), and large lichen fragments enter the gut. Portions of food are compacted into soft rounded masses (boluses) and covered by a peritrophic envelope. This is not a cellular membrane but a protein secretion of the gut containing chitin. Most importantly, it is sticky. The ovoid pellets are transported to the caeca where they remain during the resting period. In the next period of activity, they are expelled through a relatively large anal opening with a pair of trapdoor-like valves. The slimy peritrophic envelope helps the faecal pellets stick to whatever they land on. In short, the mites' inefficient digestive system results in effective dispersal for the lichen.

Honegger concluded this might be a common mode of dispersal, both short-distance and long-distance, of both mycobiont and photobionts together – not only for *X. parietina* but also other lichens ... perhaps including *Amandinea punctata*.

Mites dusted with soredia have been shown to carry them up to 7 cm from the

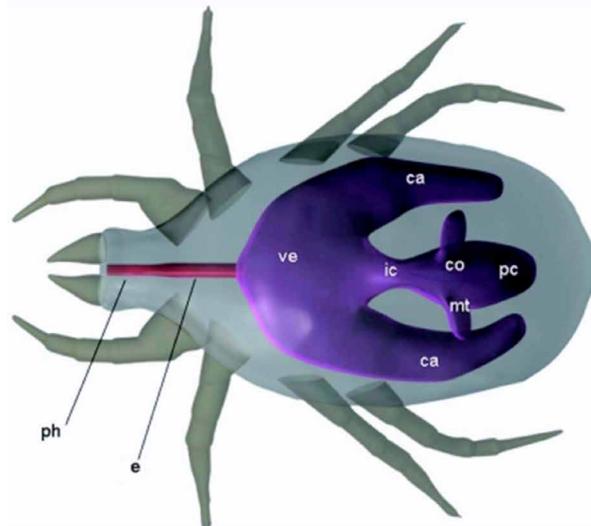


Fig. 2 Model of the acari digestive system.

ph – pharynx
 e – esophagus
 ve – ventriculus
 ic – intercolon
 ca – caeca
 co – colon
 mt – malpighian tubes
 pc – postcolon

Reproduced from Erban & Hubert (2010) with kind permission of Tomas Erban

source (Stubbs, 1995). Sticky faecal pellets are also effective vegetative propagules and may be carried much further. So, next time you find mite faecal pellets under your microscope, try a squash and see if you can work out what lichen was eaten and where the nearest specimen might be. As primary consumers of lichens, mites provide a combined packaged dispersal service for both mycobiont and photobiont. Sometimes it is good to be eaten.

References

10:42 available online: insectscience.org/10.42
 Erban, T. & Hubert, J. (2010) Determination of pH in regions of the midguts of acaridid mites. *Journal of Insect Science* 10: Article 42.
 Meier, F.A., Scherrer, S. & Honegger, R. (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete *Xanthoria parietina* and its green algal photobiont, *Trebouxia arboricola*. *Biological Journal of the Linnean Society* 76: 259–268.
 Seyd, E.L. & Seaward, M.R.D. (1984) The association of oribatid mites with lichens. *Zoological Journal of the Linnean Society* 80: 369–420.
 Stubbs, C.S. (1995) Dispersal of soredia by the oribatid mite, *Humerobates arborea*. *Mycologia* 87(4): 454–458.

Ann M. Claypole

annclaypole@gmx.com

Keywords

Oribatid mites, lichenivorous, faecal pellets, *Xanthoria parietina*

Lichen conservation and ivy – a British Lichen Society position statement

Ivy good or bad? Ivy growing on trees can elicit very different reactions. To many, it is a rich resource for wildlife and should on no account be cut or disturbed. In contrast, those interested in the lichens and bryophytes growing on trees consider rampant ivy a serious threat to rare and declining species. Ivy can also be problematic on rocks and even on the ground, invading open grasslands and similar habitats, displacing smaller species. Debates can be charged, but with understanding on both sides, they need not be.

The past. Well into the last century, ivy was frequently cut from tree trunks as a matter of course. Some of the reasons offered for this, such as the assertion that ivy directly damages trees, proved to be unfounded. So, was this a completely pointless activity? Heavy ivy growth in tree crowns does indeed increase the risk of winter windthrow, especially on ash, and can reduce the vigour of older trees, so cutting was not as mindless as it may have appeared. There are also other practical issues (see Cowan, 2000, and Lonsdale, 2013). Historically, ivy was cut as fodder to feed animals in the winter. In traditionally grazed woods, ivy was heavily browsed in winter by both stock and deer. This kept trees and rocks largely clear of ivy. Similar browsing would have occurred in the wild wood. Cutting and browsing of ivy was normal practice in the old, unmechanised countryside. Today, very little ivy is cut, and browsing has declined in traditionally grazed woods. In many areas this has led to a large increase in ivy cover on trees.

Benefits. Ivy on trees offers cover and food for wildlife. The nectar, pollen and berries provide an essential food source for insects and birds during autumn and winter when there is little else available. It also provides shelter for insects, birds, bats and other small mammals. Ivy is vital to many insects before they go into hibernation. It is an important food plant for some butterfly and moth larvae such as Holly Blue, Small Dusty Wave, Angle Shades and Swallow-tailed Moth (Woodland Trust, 2021). However, very few rare or declining species are dependent on ivy. Occasionally old ivy can even be host to some uncommon lichens.

Holly Blue, an attractive common butterfly that feeds on ivy in autumn

Negative impacts. Unconstrained ivy can completely cover the lower trunks of trees, leaving no habitat for epiphytic lichens. The dense growth of the leaves and the smaller stems strongly shade the bark and eventually exclude all lichen growth. This only becomes a major conservation issue when something constraining ivy growth is removed in habitats rich in rare lichens. In these circumstances, large scale losses of rare and declining lichens can occur. The main observed causes of ivy expansion into formerly lichen-rich habitats are not a cessation of ivy cutting, but the removal of grazing from woods or parkland, affecting lichen-rich trees and rocks. The transition of hedge cutting from manual to machine has probably also curtailed the tradition of cutting ivy for fodder

and led to increases in ivy cover on hedgerow trees.

Balance and priorities. The vehemence with which negative opinions on ivy cutting are sometimes voiced is surprising in light of how little cutting now occurs in the countryside.

The impression is given of people passionately fighting a war that is already won. This can hinder reasonable discussion of the few cases where ivy is a serious conservation issue, as well as of any general conflicts between biodiversity conservation and uncontrolled ivy growth. Both sides need to recognise the need for balance. No lichenologist should argue for the elimination of all tree-growing ivy growing on trees from any site; equally, the “opposition” should accept that there are localised problems with ivy overgrowth.

How much ivy? In terms of conflict with other biodiversity interests there is, unfortunately, no information on how much ivy is required for the biodiversity benefits of ivy on trees; presumably it is not needed on every tree. Equally ivy should be present to some degree, even within pasture woodlands. Random sampling of two lichen-rich pasture woodlands in the New Forest anciently grazed by pony, cattle and deer gives an indication of the sort of densities of ivy that are compatible with maintaining lichen-rich woodlands (Sanderson, 2001). The relevant study found 10 to 18 trees per ha with crown ivy (4 to 12% of the number of canopy trees). Even on these trees the lowest 2m of trunk, a rich area for lichens, were kept clear of ivy leaves by browsing.

Large-scale coverage of trunks by ivy is unlikely to be a natural feature; in the wild wood, winter browsing by aurochs and red deer would have had a similar effect on ivy as the browsing seen today in the New Forest. Equally, the complete absence of ivy on trees, once widespread but now a rarity, was also a product of human management, undesirable and likely to be difficult to achieve nowadays.

Recommendation. The New Forest data, suggested that, ideally, **no more than 15% of trees in lichen-rich sites should support crown ivy** and that, if at all possible, the lower sections of these trunks should be browsed clear of ivy.

Where is ivy control needed? Ivy should only be actively controlled where there is a

The last fragments of a once large colony of the severely threatened Grey Tree Lungwort, *Lobaria scrobiculata*, overwhelmed by ivy after the parkland tree was fenced off from grazing. Florence Court, Fermanagh, 2011.

Florence Court, Fermanagh, 2011. Left, a poplar, fenced off from grazing, which formerly supported a strong colony of Grey Tree Lungwort, *Lobaria scrobiculata*, in the 1980s. This was nearly lost by 2011 to mass ivy growth. Centre, a tree within the grazed park with both crown ivy and a lichen-rich trunk. Right, a strong colony of *Lobaria scrobiculata* within the grazed park in 2011 on a tree without ivy.

significant lichen or bryophyte interest that is being threatened by ivy overgrowth. This should certainly include international and nationally important sites for lichens (Sanderson et al, 2018), but even in the case of sites of local importance for lichens, some ivy control may be appropriate. Priority sites are likely to be lichen-rich sites where changes in land use have relatively recently removed a previous check on ivy growth.

What actions should be taken? The best action, where possible, is to reverse the land use change that has caused ivy to increase in the first place. This is especially the case where browsing has been reduced, encouraging ivy growth. Hand control of ivy in large sites is completely impractical nowadays but restoring reasonable levels of browsing in habitats such as pasture woodland, parkland and coastal slopes can control or reverse ivy invasion. This action will usually benefit not only lichens but also many species within the habitat which were threatened by shade. If the ivy invasion is not well established, this may be all that is needed; browsing will open up the habitat, while some ivy will escape above the browsing, maintaining the valuable crown ivy habitat. When restoring grazing, care should be taken not to fence out important marginal veteran trees.

Just as scrub clearance may be a necessary part of the restoration of a long-neglected chalk grassland, some ivy cutting may be advisable where important lichen sites have been heavily invaded. Ideally, this should be done when the factors causing the increase in ivy cover have been reversed, so that the cutting has a chance of being effective in the long term. The following general protocol is suggested for controlling ivy in lichen-rich woodlands, parkland trees and similar habitats:

- ◆ Ideally action should be informed by a lichen survey, so the most problematic areas can be located. Many important lichen sites lack modern or existing data on the rare lichens so any site with frequent veteran or old trees, but no detailed

lichen data, may need assessing.

- ◆ Within delimited lichen-rich areas with heavy ivy growth, most ivy stems should be cut.
- ◆ Ivy should be cut near the base of tree trunks or rocks, with the stems above not pulled off; it will die off slowly and cause less disturbance and damage to pre-existing biodiversity. Pulling off can dislodge larger leafy lichens and bryophyte mats.
- ◆ Any long-established and large diameter ivy climbing up trunks should be left untouched.
- ◆ Within these areas, all or most small diameter ivy on trunks should be cut, with the aim of killing off most of the crown ivy in the stand.
- ◆ The aim should be to retain a scatter of trees with crown ivy within the stand, preferably leaving less than 15% of the older trees with crown ivy or the potential for crown ivy to develop in the near future. In very high quality lichen hot spots a precautionary lower threshold may be justified.
- ◆ Revisiting and monitoring is advised. In grazed woods the effectiveness of grazing suppression can be assessed, and grazing pressure adjusted. Any new invasion on important trees should be dealt with while young. In ungrazed woods widespread repeat cutting will likely be needed in a few years.


The general countryside. In some areas, such as south west Ireland, every tree can be so densely covered in ivy that not even common trunk-inhabiting lichens survive and more local but widespread species can be come locally threatened. Although ivy control is not a high priority outside areas of conservation importance for lichens, in instances where every tree becomes covered, there is a case for some ivy control, but not elimination, in order to retain habitat for lichens and as suitable habitat for potential future colonisation by lichens.

References


Cowan (2000) Ivy Friend or Foe. Sevenoaks, A&E ArborEcology. tinyurl.com/ivyfriendfoe

Lonsdale, D. (ed.) (2013). Ancient and other veteran trees: further guidance on management. The Tree Council, London 212pp. tinyurl.com/ancientveterantrees

Sanderson, N. A. (2001) Epiphytic Lichen Monitoring in the New Forest 2000. LIFE

A lichen-rich old New Forest beech with both rare lichens low down and crown ivy above.

Above left, ivy partly browsed by stock from the adjacent field on a veteran wood edge oak, Melbury, Dorset. The dark patch is the Notable lichen *Porina coralloidea*. Above right, the Near Threatened lichen *Roccella phycopsis* (the brown area between the ivy stems) threatened by ivy, coastal slope, Duty Point, north Devon.

Job L33A2U. A report by Botanical Survey & Assessment to Forest Enterprise.
 Sanderson, N. A., Wilkins, T., Bosanquet, S. & Genney, D. (2018) Guidelines for the Selection of Biological SSSIs. Part 2: Detailed Guidelines for Habitats and Species Groups. Chapter 13 Lichens and associated microfungi. Joint Nature Conservation Committee 2018: Peterborough <https://jncc.defra.gov.uk/page-2303>.
 Woodland Trust (2021) Ivy. tinyurl.com/woodlandtrustonivy Website accessed 6/8/2021.

Photographs

All photographs Neil A Sanderson, except Holly Blue (royalty free Shutterstock).

Neil A Sanderson

neilsand@dircon.co.uk

Conservation Officer, British Lichen Society 10th May 2025

Alert! Look out for *Candelaria concolor*!

Editor's note: this article appeared recently in the Bulletin of the Swedish Lichen Society. The authors have kindly agreed to have it translated and published here. It shows that when we talk about distribution and abundance we should sometimes take a wider view.

Candelaria concolor is a lichen that has long been regarded as rare in Sweden and in the latest Swedish Red List is classified as endangered (EN). However, recent records may indicate that the species is possibly more widespread than we previously thought or even increasing.

Fig. 1. Ola surveys lichens on very young trees of small Chinese pear and Japanese zelkova in Gothenburg. *Candelaria concolor* occurs on most of these trees. The origin of the trees is uncertain, but they probably came from nurseries further south in Europe. The trees in the photo also harbour several thalli of *Hyperphyscia adglutinata* (EN), of which some were found with apothecia. Photo © R. Vicente.

Climate change, heat islands in urban environments and the importation of trees raised further south in Europe are all possible causes of the species' increase. Those recording lichens are therefore asked to keep an eye out for this lichen.

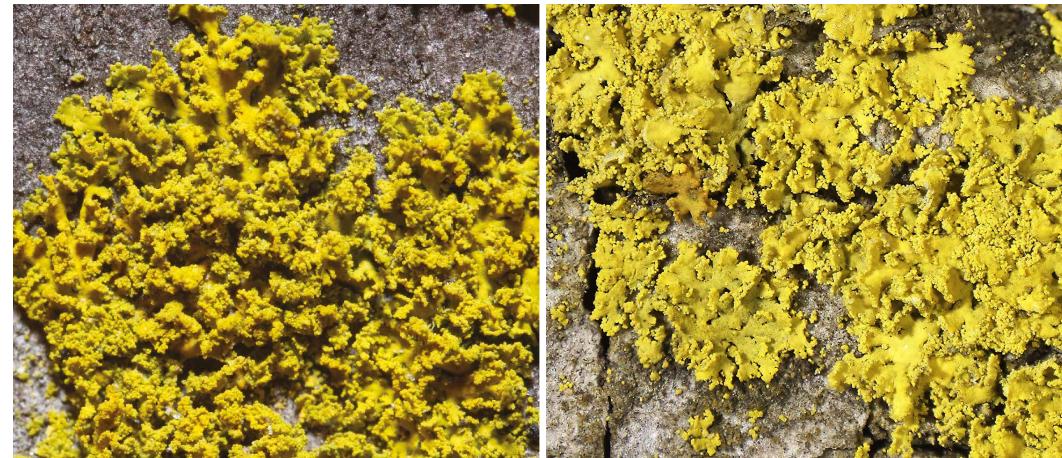

C. concolor is a small foliose lichen, until recently known from only eight locations from

Fig. 2. *Candelaria concolor* is recognizable by its narrow, greenish-yellow, and abundant branched lobes, often evenly narrow in length. The thallus is flat and adpressed against the substrate. At the ends and along the edges of the lobes, blastidia of the same colour as the thallus are formed. The thallus underside is corticate and provided with occasional white rhizines.
 Photo © U. Arup.

the regions of Scania, Västergötland, Södermanland and Närke, all in the southern third of Sweden (data from Artfakta, the species data bank SLU). According to the database, *C. concolor* has not been refound in some of its previously known localities. In recent years most records have been made in Gothenburg, where the lichen has its 'core population', although recent finds have also been made in Borås in Västergötland and Huddinge in Södermanland (www.artportalen.se).

Older data show that *C. concolor* was found mostly on old avenue trees, especially ash and elm, which is one of the reasons it is currently red-listed. However in recent years it has been encountered on walnut and mountain cherry. It is now a common

Figs. 3–4. *Candelaria pacifica* is similar but is usually uneven in its thallus appearance; lobes with small protrusions and it generally looks messier. The thallus is usually smaller and more upright. Another good character is that the underside of the trunk of *C. pacifica* is ecorctate and lacks rhizines (it mostly consists of a white cobweb-like tissue, so-called tomentum) (Westberg & Arup 2010, 2011). To differentiate between hard-to-determine young and small specimens of the above-mentioned species the underside should be checked. Photo © U. Arup.

lichen in continental Europe on deciduous trees in open nitrogen-rich environments. It often grows with *Candelaria pacifica*, *Xanthoria parietina*, *Candelariella-*, *Physcia-* and *Physconia* species as well as other lichens of nutrient-rich environments.

Species with a southern distribution are becoming more abundant and are spreading northwards, together with an increase of and general spread of nitrogen loving species.

In 2023 the authors conducted a survey of trees in Gothenburg and found *C. concolor* on more than 70 trees! It was recorded on a wide variety of trees – whitebeam, ash, lime, beech, hornbeam and young trees of various exotic species such as Japanese zelkova (*Zelkova serrata*) and Chinese pear (*Pyrus pyrifolia*).

Following the findings in Gothenburg, Raul Vicente searched for *C. concolor* in

the south of Skåne (the southernmost county of Sweden) where it was found in the autumn and winter of 2023/2024 after many years of absence. It was recorded on a few juvenile German maples and park limes in the towns of Falsterbo, Malmö, Svedala and Ängelholm as well as in Lund's urban environments, particularly on many lime and various non-native trees.

Possible reasons for the species' increase

Candelaria concolor is a southern species, Sweden being at its northern limit of distribution. It also appears to be favoured by high levels of airborne nitrogen. Several studies, including one conducted in Gothenburg's Botanical Garden, demonstrate that climate change (van Herk *et al.* 2002; Aptroot & van Herk 2007, Arvidsson *et al.* 2021) and continued high nitrogen levels (Dobben & de Bakker 1996, van Herk 2001, Arvidsson *et al.* 2021) are drivers for large-scale changes in the lichen flora of north-west Europe. Species with a southern distribution are becoming more abundant and are spreading northwards, together with an increase of and general spread of nitrogen loving species. Traffic-intensive areas with airborne nitrogen compounds from combustion and dust from the passage of vehicles create suitable habitats for these lichens in urban areas.

In addition, it should be noted that cities, with a large proportion of hard surfaces, act as 'heat islands' with a climate a couple of degrees warmer than surrounding areas (Frizzell & Werner 2003).

Another red-listed lichen that was noted on young exotic trees (Japanese zelkova and small Chinese pear) during the survey in Gothenburg was *Hyperphyscia adglutinata* which also has been found in several localities in Skåne in recent months. In Gothenburg it was previously recorded from Caucasian wingnut (*Pterocarya fraxinifolia*) in Gothenburg (www.artportalen.se). Like *Candelaria concolor* it is nitrogen loving and a further expansion from the south can thus be expected.

The theory has been raised that rare southern species that establish themselves in southern Sweden have come to the country via trees imported from nurseries in Germany and Holland (Larsson 2012, Fritz 2013, Hammarström & Sundell Eklund

Fig 5. *Hyperphyscia adglutinata*. Photo © U. Arup.

2013). Mounting evidence suggests that this is the case, and that the tree importation facilitates the spread of the species. Look out for these species on planted trees in urban environments and also on older deciduous trees such as elm, ash, maple and lime. Who knows what other species might hitch a ride with imported trees?

References

Aptroot, A. & van Herk, C.M. (2007). Further evidence of the effects of global warming on lichens, particularly those with *Trentepohlia* phycobionts. *Environmental Pollution* 146: 293–298.

Arvidsson, L., Hammarström, O. & Appelqvist, T. (2021). Epiphytic lichens in Gothenburg Botanical Garden – a re-inventory. *Lavbulletinen* 2021:1. (in Swedish)

van Dobben, H.F. & de Bakker, A.J. (1996). Re-mapping the epiphytic lichen biodiversity in The Netherlands: effects of decreasing SO₂ and increasing NH. *Acta Botanica Nederlandica* 45: 55–71.

Fritz, Ö. (2013). *Flavoparmelia caperata* and other rare foliose lichens at Flygstaden in Halmstad. *Naturcentrum AB*. (in Swedish)

Frizell, B. & Werner, M. (eds.) 2003. Västra Götaland. Sweden National Atlas, Örebro.

Hammarström, O. & Sundell Eklund, J. (2013). Inventory of natural values linked to city trees in Gothenburg municipality – Rare Parmeliaceae. Gothenburg City, Park and Nature.

van Herk, C. M. (2001). Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. *Lichenologist* 33: 419–441.

van Herk, C. M., Aptroot, A. & van Dobben, H. F. (2002). Long-term monitoring in the Netherlands suggests that lichens respond to global warming. *Lichenologist* 34: 141–154.

Larsson, U. 2012. About goat lichen, little goat lichen (*Flavoparmelia* spp.?) and some other species distributions in Gothenburg and surroundings. *Lavbulletinen* 2012: 44–49. (in Swedish)

Swedish Species Information Centre: Candelaria-concolor: tinyurl.com/candelariaconcolor

Swedish Species Information Centre – reports portal: <https://artportalen.se>

Westberg, M. & Arup, U. (2010). *Candelaria concolor* – a rare lichen in the Nordic countries. *Graphis Scripta* 22: 38–42.

Westberg, M. & Arup, U. 2011. *Candaria pacifica* sp. nov. (Ascomycota, Candelariales) and the identity of *Candelaria vulgaris*. *Bibliotheca Lichenologica* 106: 353–364.

Raul Vicente

rvicaligata@gmail.com

Ola Hammarström

olahammaström@hotmail.com

On becoming lichenocentric

My arts PhD has become lichenised and a weird *thallus*, I mean thesis, is emerging at the centre of my research. Here is my story.

It all started on Lundy Island, where I nearly stepped on a small, startlingly yellow-orange branched lichen. Being one of the easier lichens to identify, it didn't take long to discover that it was *Teloschistes flavicans*. As the poet Mary Oliver wrote, "if you notice anything, it leads you to notice more and more" and Lundy is the perfect place to notice lichens – their abundance of form, colour and growth habit. It started as an aesthetic appreciation, but the astonishing lichen chapters in Kimmerer's (2020) book *Braiding Sweetgrass*, and Sheldrake's (2020) *Entangled Life* made me want to find out more. It was around this time that I started my PhD and then joined the British Lichen Society and bought a hand lens: worlds opened.

At first glance, a PhD researching Mary Stella Edwards' 20th century poetry and watercolour paintings appears to have no connection to lichenology at all. Indeed, her only mentions of lichen (found so far) are of making a tiny diorama comprising a glass fish ornament surrounded by lichen (the 'seaweed'), and beach pebbles and of 'lichen'

Teloschistes flavicans on Lundy Photo © Rachel Marsh

Glass ornament with lichen and pebbles, at The Cabin, Bucks Mills Photo © acklandandedwardstrust.co.uk

of the forest. And she wrote about the impossibility of knowing the exact moment of a flower's death. Her language is archaic, but on closer reading they have a strange power. Rereading them in conjunction with academic thinkers such as Haraway (2016), Bennett (2010) and van Dooren (2016), their power only grows as her poems resonate with surprisingly contemporary concerns. One of her poems even rejects dualism – the bogeyman of the environmental humanities! Meanwhile, the biosemiotics of Uexküll and research on plant intelligence by Calvo (2023) led me towards a multidisciplinary humanities/science research path that suggested both 'sides' were really writing about something very similar. Whereas Haraway (2016) might write: "material semiotics is exuberantly chemical", Calvo (2023) writes about plants' mastery of "chemical talk" using scent, with a cocktail menu of over 1,700 volatile organic compounds.

Where are the lichens in all this? While half of my PhD research is spent in archives and books, the other half is arts-practice based. My work is very different to Edwards' in that I am a letterpress printer and I enjoy printing texts that no one can read. However, we both share the view that humans are not the only intelligence in the world. I am fascinated by the symbiotic relationship between photobiont and mycobiont in the lichen... Fungi and algae for example are from different kingdoms. How could they possibly communicate? Le Guin's tongue-in-cheek short story, *The Author of the Acacia Seeds* (2015) explores the speculative future-science of 'theralinguistics' where even the "lyrics of the lichens" are read and understood by humans. But what if, I wondered, the lichen fungi and algae were both communicating but in completely different languages? I made a print, 'What the Lichen said', to explore this idea – both speak in English (in translation from their languages) but hear an incomprehensible language from the other. I printed each in a different colour, one on top of the other because as humans we don't understand what they are saying. As a nod to other species' DNA

and a different kind of we; dpypmti mycatalidh
a creaturely fns; that wodomihyplkiwbsunik
powers and fuels; train xadontadna
protects and forages, radogniigbragiityps
opening lworlds, mudrnt am mudrnt
pioneers, in the pid tulgavdauyk ay
edge explorers, habrukms koch
flinging out space frytiknh, Enroncdysme
travellers tolntew ym thyksandrovhym
worldings to come dhy'gh amhorsviyktulm

'What the Lichen Said', three-colour letterpress print
Photo © Rachel Marsh

being found in lichen bodies, I included an extra layer in red; an anagram. To my surprise, if you read the English 'translations' across the page, from alga to fungus – it makes sense, as though each were finishing the other's thoughts. It was a strange and slightly trippy moment.

Reading about the history of lichenology is equally trippy – especially the various anthropocentric descriptions of the relationship between fungus and alga as being, variously: master and slave, jailer and prisoner, vampire and victim, and even "algal damsel and tyrant fungal master" (quoted in Whelan, 2024). These descriptions seem extraordinarily revealing about early lichenologists! Whelan (2024) writes that thinking about the relationship in this way is "not a good place for lichenology to develop from". However, the anthropocentric metaphors persist – especially in places where lichens are being explained to a public audience. Midgley, a philosopher, wrote that it's impossible to avoid using these metaphors – or myths – as she called them. We can *only* frame the world in terms of our deeply held models of the way the world works. The trick is to be aware of them, and to have more than one so that our understanding isn't limited by them.

And so I return to Mary Stella Edwards, the subject of my PhD. She is not a well-known poet or artist, and her work tends to be framed as part of LGBTQ history. Edwards wanted her and her partner Judith Ackland's work and lives together to be remembered. This is why she took steps to preserve The Cabin in Bucks Mills where they were happiest, and to create an archive of their papers and work. However, she strongly resisted the LGBTQ framing; writing "There is no 'label' that could enclose all the kinds of love we felt for each other – the starry heights, the simple joy of 'being' together, and all the deep happy relationships between..."

The two women could hardly have been more different. Edwards and Ackland were short and tall, theatrical and self-effacing, bohemian and private, dreamy and practical... the list goes on. Their early letters to each other show frequent misunderstandings as they negotiated the start of their relationship. They test each other out. They reassure one another. There are frequent apologies. Gradually they created a shared language and understanding.

The two met at art college in London and became a formidable team producing book jackets and illustrations. Later they made dioramas for museums. Both painted and exhibited their work, and Edwards wrote poetry. And here too, the two worked together. Through the archive I've discovered just how big an influence Ackland had on Edwards' poems. She was their first audience, frequently provided the titles, offered writing strategies and questioned word choices. Edwards herself compared this creative collaboration to that

Spotted at RHS Rosemoor
Photo © Rachel Marsh

between William and Dorothy Wordsworth. I have begun to see their relationship as a symbiotic and composite way of living creatively in a sometimes hostile world. In other words, I am exploring the impact of their relationship through a lichenocentric lens. It's not the *only* way to view their work together, but it's a generous and expansive one that seems to be opening new worlds... rather like buying my first hand-lens to look at lichens.

Gilbert, Sapp, and Tauber (2012) wrote that genomic sequencing has disrupted our understanding of the "biological individual", as the relationship between animals and their many symbiotic microorganisms affects animals' development, immunity, digestion and evolution. Their paper concludes: "We are all lichens". What happens if we expand outwards from here? Let's start with Gilbert, Sapp and Tauber themselves. They are two biologists and one philosopher – science and the humanities. In the art world, Brian Eno (2015) does not believe in the artist 'genius'. Rather, he suggests that artists need one another – they need community or a 'Scenius' in order to develop. Individualism is highly over-rated. Maybe lichenism is the way forward?

References

Bennett, J. (2010) *Vibrant matter: a political ecology of things*. Durham: Duke University Press.

Calvo, P. with Lawrence, Natalie (2023) *Planta Sapiens: Unmasking Plant Intelligence*. London: The Bridge Street Press.

van Dooren, T., Kirksey, E. and Münster, U. (2016) Multispecies studies: cultivating arts of attentiveness. *Environmental Humanities* [online]. 8 (1): pp. 1–23.

Edwards, M.S. (1968) *A Truce with Time*. Cambridge: The Golden Head Press.

Edwards, M.S. (1926) *Time and Chance*. London: The Hogarth Press.

Eno, B (2015) *John Peel lecture*, BBC 6music tinyurl.com/enoscenius

Gilbert, S.F., Sapp, J., Tauber, A.I., (2012) A Symbiotic View of Life: We Have Never Been Individuals. *The Quarterly review of biology* [online]. 87(4): pp. 325–341.

Haraway, D.J. (2016) *Staying with the trouble: making kin in the Chthulucene*. Durham: Duke University Press.

Kimmerer, R.W. (2020) *Braiding sweetgrass: indigenous wisdom, scientific knowledge and the teachings of plants*. London: Penguin Books.

Le Guin, U. K. (2015) The Author of the Acacia Seeds. *The unreal and the real*. Gollancz, pp. 265–272.

Midgley, M. (2011) *The myths we live by*. Abingdon; New York: Routledge.

Oliver, M. (1992) *New and selected poems*. Boston: Beacon Press.

Palmer, L.A. (2023) *The lichen museum*. Cambridge: University of Minnesota Press.

Sheldrake, M. (2020) *Entangled life: how fungi make our worlds, change our minds and shape our futures*. London: The Bodley Head.

Whelan, P.A. (2024) *Lichens of Ireland and Great Britain Volume 1 (of 2)*. Dublin: Holm Oak Press / National Botanic Gardens.

Rachel Marsh

rachel.marsh@btinternet.com

Lichen intermediate stage 2 course – corticolous communities

The LEAF 2 course on 11th–14th October at Nettlecombe Court focussed on lichen communities. The nine 'students' on the course were at very varied levels in their lichen training, with some extremely competent microscopists and some who had barely started on this, but the core teaching was of interest to all and in between we could each work at our own level.

I vaguely knew that there were lichen communities, but had no idea there were so many and hadn't realised their importance. We looked particularly at the dry bark, wet bark, nitrophilous and smooth bark communities. This involved many new species and the now familiar feeling of brain bursting with all the new names and information. What had previously looked like bark became recognisable *Dendrographa decolorans* and *Pachnolepia pruinata*. There was a practical link to ecology in looking for nitrophilous community species starting to invade habitats not previously suitable for them.

Looking at the community on an apple tree in the orchard at Nettlecombe Court.

For light relief, we had fascinating sessions on photobionts, practised using the Excel recording spreadsheet and the interactive map, learnt about using Pd, and could try the Maxine challenge: identifying how many species were present on a walnut branch. Ann and I were delighted to find one more species (during two hours or so) than Maxine had done (in about 5 minutes).

At the end of the course, we could all recognise one more community: the lichen

Cresponea premnea – prominent in the dry bark community of a veteran oak.
Photo © M. Putnam

people community, characterised by generosity, kindness, friendliness and openness. Thanks to all in the group for sharing their knowledge, tips (Sylvia's white crusts sheet!), fabulous cake and wine (Bill!) and companionship; and especial thanks to Maxine, John and Pat for the huge amounts of time, energy, expertise and enthusiasm they put into preparing and delivering such a great course to the group and to each of us individually.

Jacq Lavender
jlavender62@googlemail.com

Report for the BLS committee on IMC12 attendance (11–15 August 2024)

The British Lichen Society supports the editors of its journal – *The Lichenologist* – to attend the meetings of the International Association of Lichenology (IAL), and the International Mycological Congress (IMC), making it possible to explore relevant advances in the subject matter, to promote the journal and to engage in discussion with potential contributors. Since the editors were unable to attend this year's IMC, I had the opportunity – as Managing Editor – to attend as an ambassador for *The Lichenologist*, and

on behalf of the British Lichen Society. I took with me leaflets produced by Cambridge University Press with information about the journal as promotional material.

There was a good coverage of lichen related topics at IMC12 with over 30 lichen presentations. Two key-note sessions featured talks by lichenologists (Jolanta Miadlikowska and Robert Lücking). There was a tropical lichen symposium and lichen presentations featured in many thematic sessions (extreme environments, fungal metabolites, fungal genomics, aquatic fungi, etc.) as well as being prominent in a session on fungal-photoautotroph interactions. In addition to attending these, I made an effort to go to presentations on systematics and nomenclature, and also conservation, as these subjects interest me personally, and are also highly relevant to *The Lichenologist*.

Initially I aimed to talk to anyone who was involved with lichenology. However, in the end I mostly engaged with early career researchers as the older, more established individuals, looked at me a bit blankly and said that they already published in *The Lichenologist*!!

I found the best engagement strategy was with folk presenting posters over the extended lunchtime period, when they were asked to stand at their posters for questions. In this way I could interact more fully with the individual researcher, rather than just handing out leaflets. I did this over three lunch times until I felt I had contacted all early career lichenologists and they seemed really pleased to be approached. For those whom I could not find at their posters, I tucked a leaflet behind the poster so they would receive it as a surprise when they took their poster down. I also spoke to people before and after lectures, and handed out leaflets this way too.

There was a strong positive response to *The Lichenologist*. However, one individual expressed concern about the speed of publication and I was able to reassure them that procedures had been in place for some time now, expressly aimed to speed up the publication process without sacrificing academic rigour. The time to publication is these days a great concern, especially for PhD students.

Overall, attendance proved to be a highly engaging and positive exercise with early career researchers and perhaps a bit of a reminder for some of the older ones.

Joanne Taylor (Managing Editor, *The Lichenologist*)
jtaylor2@rbge.org.uk

'Mushroom Language' – theatre review

5 Cladonias

The darkened stage is covered by a brown tarpaulin, crinkled and wrinkled from one side to the other. We can just make out trees made of bleached branches at the back of the stage, but... are those human bones among them? My friend and I agree that this theatre performance will either be amazing, or excruciatingly awful – and we would be happy with either outcome!

We went to see 'Mushroom Language' at the Plymouth Barbican on the basis of a WhatsApp message from my local lichen improvers' group, and the write-up promising an "eerie and darkly funny" fungal "eco-gothic". To be honest they had me at "lichen love stories". The show began with a man and a woman dressed in white shorts and t-shirts enacting a deer being run over late at night, from the point of view of both the driver and the deer... Fungal processes then got to work in the deer's carcase. It was definitely eerie, and very serious and I worried we were deep in the 'excruciating' category. But then there was a pause, and suddenly the woman said "Let's do it again. I want to do it again!" I nearly laughed out loud with relief.

There followed a series of discussions and enactments of various aspects of fungal lifeforms – from the truffles' smelly calls to pigs, to the mycelial network between trees. Soon the audience was completely invested – and I had helpless tears of laughter at the *Phallus impudicus* segment. The tone switched so quickly between hilarity, wonder and horror, it was sometimes hard to keep up. Hidden holes in the tarpaulin provided props of all descriptions including veils, baby dolls (spores) and masks. The lichen love story involved the two performers squeezing into a three-legged, three-armed stretchy costume – becoming a composite being – until the alga decided it had had enough! The play explored the full weirdness of the fungal kingdom in all its many forms. The Q&A after the show included Dr Laure Ries of Plymouth university, and confirmed that Ali Matthews (writer and performer) had developed the show after reading *Entangled Life* by Merlyn Sheldrake.

The performers showed the importance of our attempting to understand this other world – so separate to humans and yet so integral to our lives – while acknowledging that being human means we'll never really be able to speak "Mushroom Language".

Highly recommended. 'Mushroom Language' is touring the UK. Find a performance near you: www.alimathews.org/dates.html

Rachel Marsh
rachel.marsh@btinternet.com

Find me! Find me! Photo © Georgiana Ghetiu

How lichen changed my research career

Towards the end of my biochemistry degree, I was at a loss as to what to do. I'd chosen to study biochemistry because I wanted to study the underlying processes behind living things and in the process gained an affinity for the small details of life. Alongside my degree though I was becoming increasingly more fascinated by the ecology of the natural world, which at the time felt as though it conflicted with the research path I'd chosen. I also wanted to do something that would quickly contribute to fixing the climate crisis and I'd lost some of my faith I could achieve this with research. So, I decided I'd move away from my degree and pursue a career in conservation. To do this I needed to improve and provide proof of my identification skills. As part of this goal, I applied for a grant from the British Lichen Society to attend a course on 'Identifying Lichens as Biological Indicators', which I was delighted to receive.

Lichens have always interested me because they are an example of different species living together for the community's mutual benefit. Studying symbiosis has the potential to change how we see ourselves and how we organise our societies, so that we can live in greater collaboration with each other and the natural world.

When I was told a condition of the grant was writing an article, I began to research lichens in more depth and was suddenly thrown into a world of complexity that challenged the way I saw biology; such as if in lichen only the fungal partner reproduces sexually then how do lichens evolve? I was hooked. It also revealed a far more complex picture of symbiosis; the fungal partner produces the thalline structure of the lichen and has a lot more control over the partnership than the photobiont. In addition, lichens are increasingly being shown to be composed of more than two partners (Morillas, L. *et al.*, 2022). In a metagenomic study of *Xanthoria parietina* 168 different genomes were found, including bacteria that were found consistently across different lichen communities (Targirdzhanova, G. *et al.*, 2025).

Fig. 1 Identifying lichens on the Young Darwin Residential with the Field Studies Council

to green. Ever since, I've been recreating the sight by spitting unashamedly on creatures I suspect to be lichens.

The explanation we were given was that this was due to the water activating the photobiont cells but it didn't quite make sense to me. The green colour would be a result of the pigment chlorophyll, yet the algal cells wouldn't have been able to produce chlorophyll as rapidly as the colour change, we observed. So what was going on? Researching it later

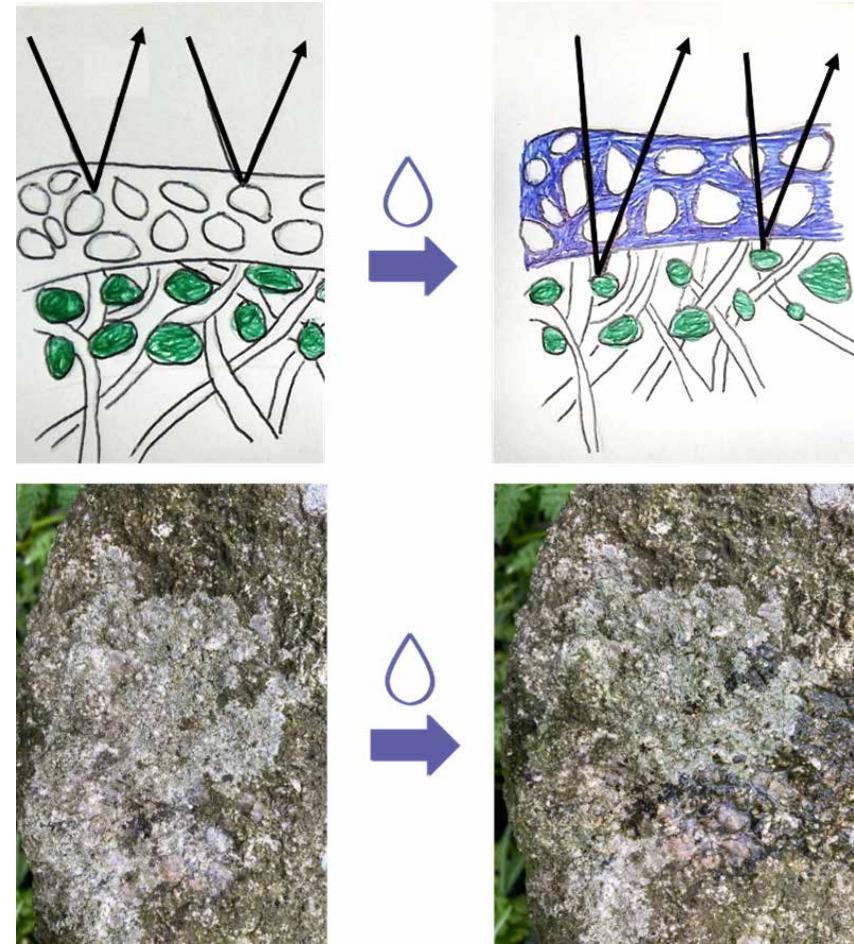


Fig. 2: Spit on it!
Simplified diagram showing how more light is reflected from the upper cortex when air is between gaps in cells, whereas when water is between gaps in cells more light can pass through the cortex making it more transparent.
Left is a photo of a lichen before and after addition of water.

I found it was due to a change in the refractive index of the gaps in the upper cortex of the lichen thallus. The refractive index describes the speed of light as it travels through a material, if there is a large difference in the refractive index between two surfaces more light will be reflected at this surface. When the lichen was dry the gaps contained air which has a very different refractive index to the cells within the lichen thallus. When water filled the gaps, the difference in the refractive index was lower as water's refractive index is more similar to that of the fungal cells. Therefore, a hydrated lichen cortex is more transparent than a dry one. So, when the lichen is wet, more light reaches the algae cells and is reflected back as green light (Fig. 2). I loved the process of researching this

and it demonstrated one of my favourite parts of learning about lichens. They are so small that they blur the lines between ecology and biochemistry.

I found a similar example of this when out with the wonderful Bristol and Gloucestershire lichen group. David Hill spoke with me about hydrophobins and how they are able to form a water repellent layer within lichens that allows the fungus greater control of the environment within the thallus. Essentially they mean that water cannot enter the area of the lichen for gas exchange and that flow of nutrients and water to the photobiont is controlled by the fungus (Dyer, P.S., 2002 and Trembley, S L. *et al.*, 2002). Hydrophobins are small proteins with a polar face able to interact with water and a non-polar face that interacts with the water-excluded layer. They are able to combine together to form layers, a little like the phospholipids within a plasma membrane. It was exciting to hear about how the environment of a lichen was controlled through a relatively simple protein structure as proteins are a big part of studying biochemistry.

I hadn't yet been on the course but getting the grant to go had already changed how I saw lichens and my ability to study the interactions between living things. I realised that it was useful to study ecology through a biochemical lens and that what interested me most was the symbiotic interactions fungi form. The thrill of reading papers on lichen biology and looking at them in the field had reignited my passion for research. Therefore, I'm beyond excited to be doing an MPhil. in Plant Science next year, a year long research project on arbuscular mycorrhizal fungi (AMF). I'm not sure if I would have applied if it hadn't been for getting the grant from the British Lichen Society.

Like lichens, mycorrhizal fungi form partnerships with plants so as to receive carbon. However they are in many ways really different from the fungi that form lichens. Rather than providing a shelter for the algae, mycorrhizal fungi use their broad hyphal networks to gather essential nutrients that plants need. The exchange of these resources is facilitated by the arbuscule, a tree-shaped structure that forms within plant root cells. As the entirety of the body of AMF is underground you won't have spotted them on walks, even though the majority of higher plants form a relationship with AMF (van der Heijden, M.D.A. *et al.*, 2015). This is because they are asexual and don't produce fruiting bodies, so don't produce mushrooms.

Although I'm excited to study AMF, lichens are still fascinating because they are examples of a fungal symbiosis I can see and touch.

Finally, in October I travelled to Exmoor for the course on 'Identifying Lichens as

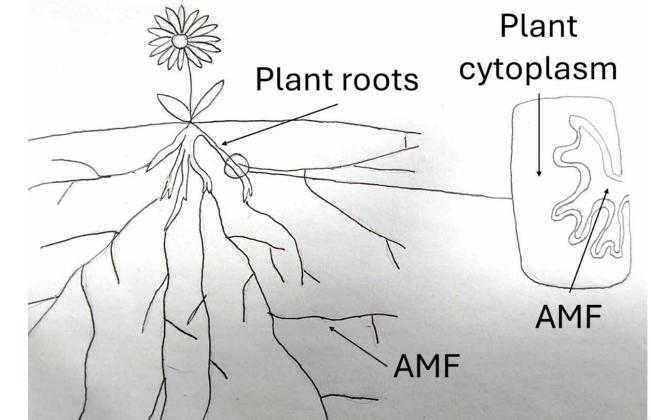


Fig. 3: Diagram showing AMF's relationship with plants

Fig. 4: Photos of *Lobaria pulmonaria* (lungwort) from the course on 'Identifying Lichen as Environmental Indicators'. It is an indicator of ancient woodland as it is very slow in colonising new areas.

work Pat had done over her career. Pat catered the course to our interests and was always receptive to our many questions, pointing each of us to a wealth of resources. One of the most exciting parts though is many of our questions didn't have an answer yet.

I can't wait to continue to explore the world of symbiosis and to meet the many fantastic people dedicated to answering these questions and using these strange 'lil' communities to understand the world.

Photographs

© A. Cotterell

References

Morillas, L., Roales, J., Cruz, C., and Munzi, S. (2022) Lichen as multipartner symbiotic relationships, *Encyclopedia* 2, 142–1431.

Tagirdzhanova, G., Scharnagl, K., Sahu, N., Yan, X., Bucknell, A., Bentham, A. R., Jégousse, C., Ament-Velásquez, S. L., Onut-Brännström, I., Johannesson, H., MacLean, D., and Talbot, N. J. (2025) Complexity of the lichen symbiosis revealed by metagenome and transcriptome analysis of *Xanthoria parietina*, *Current Biology* 35, 799–817.e795.

Dyer, P. S. (2002) Hydrophobins in the lichen symbiosis, *New Phytologist* 154, 1–4.

Trembley, M. L., Ringli, C., and Honegger, R. (2002) Hydrophobins DGH₁, DGH₂, and DGH₃ in the lichen-forming basidiomycete *Dictyonema glabratum*, *Fungal Genetics and Biology* 35, 247–259.

van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A., and Sanders, I. R. (2015) Mycorrhizal ecology and evolution: the past, the present, and the future, *New Phytologist* 205, 1406–1423.

Amy Cotterell

amy.cotterell2002@gmail.com

Biological Indicators' ran by Pat Wolseley through the Field Studies Council. The course covered the basics of lichen identification and biology. Then we went out into Nettlecombe to learn about both the lichens, such as *Xanthoria*, which indicated pollution and those which indicated clean air, such as *Usnea*. It was wonderful to learn how you can use lichens to read a landscape, like spotting *Lobaria pulmonaria* as an indicator of ancient forest (Fig.4). It was also inspiring to hear about the

The trio meets again after 60 years

The AGM of the British Lichen Society this year was at the Natural History Museum in London, the same location as in 1964. This year the AGM was attended by the three of us David Richardson, Allan Green and David Hill; this being about sixty years after we studied carbohydrate movement from algae to fungi in lichens. Our supervisor, Dr. David C. Smith was a lecturer in the Agriculture Department at Oxford University led by Professor Geoffrey Blackman. This research has made a lasting contribution to knowledge of the lichen symbiosis. Later in his career David Smith became Professor of Botany at Bristol University and then Principal of Edinburgh university and was knighted.

During the time we were in the Department of Agricultural Science at Oxford, we had tea and coffee each day and on a Friday cakes and other delectables prior to the weekly lecture by visiting scientists or graduate students. It was a very friendly department with home-made paper chromatograph scanners and other equipment that enabled studies with ¹⁴C carbon dioxide and ¹⁴C sugars. Sadly, the Agriculture Building and its nice lecture theatre has been closed. The Agricultural Science, Botany, Forestry and Zoology departments have been amalgamated and are now in other buildings.

We took the occasion to give a toast to the memory of Peter [James] and his huge contribution to lichenology in Britain

then Bristol University, Allan Green to Australia, New Zealand, Spain and Germany, and myself to Exeter University, Laurentian University in Ontario, Canada and Trinity College, Dublin, before moving back to Saint Mary's University in Nova Scotia, Canada. David Richardson wrote up an account of the BLS AGM ten years ago (Richardson, 2013). It is interesting to see how things have moved on since then, This year we had to get admission slips with a scannable code to enter the Natural History Museum, our dinner had a menu that was ordered ahead of time on the internet and the lectures and

(Left) David Richardson (centre) David Hill (right) Allan Green
Photo © Maxine Putnam

AGM were viewable by Zoom for those unable to make it to London, upset by the snow in the north. All this required technology was somewhat frustrating but worked well, and so the AGM was a most enjoyable meeting.

Getting together with other BLS members for the dinner at Bella Italia and on Saturday for lunch at the Dagouse restaurant close to South Kensington Station was a particular pleasure. The Dagouse was the traditional gathering spot used by Peter James for visitors to the Lichen Section in the Natural History Museum and notables attending AGMs of the lichen society some sixty years ago. We took the occasion to give a toast to the memory of Peter and his huge contribution to lichenology in Britain.

This year Allan Green gave a lecture with Rolf Gademann entitled "Watching lichens at work – chlorophyll fluorescence in ecophysiology". Earlier David Richardson gave a talk in Bristol to the Bristol 1904 Arts group on his grandfather, the artist F.S. Richardson, before travelling to London with David Hill. The AGM included the annual Swinscow Lecture and nearly two days of meetings and talks and was, as usual, outstanding and followed by a field excursion. Next year we three hope to get together again at the AGM.

Reference

Richardson, D.H.S (2013) Reflections on 50 years attendance at British Lichen Society Annual General Meetings. *Bull. British Lichen Society* 112: 63–65.

David Richardson

david.richardson@smu.ca

David Hill

davidlichenhill@gmail.com

Allan Green

greentga@waikato.ac.nz

Phenotypic plasticity and symbiosis in lichens

When two lichens share the same fungal and photobiont species and grow on the same substrate, their morphology can vary due to environmental influences, a phenomenon called phenotypic plasticity. These environmental differences include humidity and moisture: lichens in humid environments tend to be larger, with thinner, more delicate lobes, while those in drier conditions may be more compact and robust. Higher light intensity can lead to thicker thalli, increased pigmentation, or changes in reproductive structures. Lichens exposed to pollutants such as SO₂ and heavy metals may show stunted growth, reduced reproductive structures, or altered chemistry in secondary

metabolite production. At higher altitudes or colder environments, lichens may develop more compact, cushion-like forms to reduce water loss and withstand harsh conditions. Competition and substrate microstructure, for example, presence of mosses, algae or other lichens, can influence lichen morphology by shading, altering water retention or modifying nutrient availability.

There are many examples of lichen species that exhibit phenotypic plasticity, for example, *Hypogymnia physodes* and reindeer lichens. *Lobaria pulmonaria* forms broad, soft, well-developed thalli, with a strong green photobiont response in humid old-growth forests; thalli become reduced, fragmented and may show bleaching or necrotic patches in drier or polluted areas. *Peltigera aphthosa* forms large, lobed thalli with a well-developed cyanobacterial photobiont (*Nostoc*) in moist environments (for example, bogs, shaded forests), promoting nitrogen fixation. In drier environments (for example, exposed rocks, alpine settings) it is more compact, sometimes curled, with a thicker upper cortex to reduce water loss. *Xanthoria parietina* forms thick, bright orange thalli due to increased production of parietin (a UV-protective pigment) when growing under high light exposure (for example, coastal rocks, urban areas). In shaded environments such as under tree canopies and north-facing walls, thalli are paler, often yellowish or greenish with less parietin.

These examples highlight how lichens respond dynamically to ecological conditions, even when their fundamental symbiotic partners remain the same. Apart from responses to the environmental differences symbiotic factors may underly the phenotypic plasticity. Recent advances in metagenomics and metatranscriptomics analyses have indeed shed light on the possible mechanisms underlying phenotypic plasticity and environmental adaptations. Metagenomics is the study of genetic material recovered directly from environmental samples, allowing researchers to analyse the diversity and function of biological communities. This approach has transformed microbiology and lichenology enabling the discovery of previously unknown species, metabolic pathways and ecological interactions. Metagenomics involves DNA extraction and sequencing of environmental samples (soil, water, lichens, etc.) using high-throughput sequencing technologies. Advanced computational tools are used to assemble sequences, classify species, and predict gene functions. Machine learning and AI are increasingly being used to analyse vast amounts of metagenomic data.

The transcriptome is the total set of messenger RNAs (mRNAs) transcribed from the genome of an organism at a given time point. The composition of the transcriptome directly reflects the entire organism and will include gene expression regulated by external stimuli within the complex community. Proteins are synthesized by translation from the mRNAs. Metaproteomics aims at detecting all proteins in a biological system

... lichens respond dynamically to ecological conditions, even when their fundamental symbiotic partners remain the same ...

at a given time and in defined ecological conditions. Detailed analyses of gene products can further identify active metabolic and signalling pathways functioning under specific ecological conditions. The combination of these omics can unveil the workings of a complex community. However, despite its power, metagenomics and other omics face challenges such as assembling highly fragmented sequences, identifying unknown organisms, linking genes to specific species and achieving sensitivity required to detect low abundant gene products. However, advances in long-read sequencing, single-cell genomics, and synthetic biology are helping to address these challenges.

Applications of meta-omics are wide ranging and include studies of microbial diversity and ecology. They help to identify microbial species and their roles in ecosystems, including soil, oceans and the human gut; for example, in agriculture and soil health for studying plant-microbe interactions, soil fertility, and biological pest control. They have been applied to entire ecosystems, such as soil microbiomes, insect-microbe relationships and lichen-associated microbial communities. Studies have revealed that lichens host complex microbial ecosystems, including bacteria, viruses and fungi including yeast (Spribille *et al.*, 2016; Mark *et al.*, 2020; Hawksworth & Grube 2020). The discovery of complex interactions from the host and associated microbials has led to a shift from the individual organism and phenotypes to the holobiont and the hologenome (Simon *et al.*, 2019). This paradigm shift will bring new focus for lichen biology and research.

The discovery of complex interactions from the host and associated microbials has led to a shift from the individual organism and phenotypes to the holobiont and the hologenome

Lichens harbour a stable core microbiome along with more variable microbial communities that may turnover based on ecological conditions and interactions. This has led to a reconsideration of lichens as multi-organism symbioses rather than just simple fungal-algal partnerships. Some lichen-associated bacteria are involved in nitrogen fixation, while others influence lichen growth and resilience. The bacterial community present on *L. pulmonaria* is a structurally integrated element of the lichen symbiosis (Grimm *et al.*, 2021). Comparative analyses of lichens from different sampling sites suggest the presence of a relatively stable core microbiome and a site-specific portion of the microbiome. Bjelland *et al.* (2011) reported various bacterial communities in association with rock dwelling lichens including *Rhizocarpon geographicum*. Using a combination of culture, mass spectroscopy and RNA sequencing, Miral *et al.* (2022) analysed microbials associated with *R. geographicum* at different environmental locations. They discovered a set of bacterial strains resistant to a wide range of antibiotics and displaying tolerance to organic pollutants present in oil spills. However, their ecological and evolutionary relationship is not clear.

Recently Rolshausen *et al.* (2023) reported elevational diversity within the lichen

community in *Umbilicaria pustulata* and *U. hispanica* suggesting complex interactions between fungal hosts, green algae and bacterial communities and their environment. Interestingly, both fungal host species showed significant genomic differences that separated low elevation populations from high elevation populations. They found five green algal OTUs (Operational Taxonomic Units), belonging to the genus *Trebouxia*, along the elevation gradient. One OTU was present at all elevations while some were at low and others at high elevations. Analysing 165 patterns of associated bacterial species revealed a dynamic microbial community turnover within host species at different elevations. There are no differences in detectable morphological or chemical traits of the studied host species but they showed associations of differential microbial communities and genomic changes in altitude adaptations. Further studies are needed to understand the underlying mechanisms for evolutionary adaptation and key regulatory partnerships.

An important recent work by Tagirdzhanova *et al.* (2025) on metagenome and metatranscriptome analysis of *Xanthoria parietina* revealed over 150 genomes, including green algae, three classes of fungi and 14 bacterial phyla (see comment article by Chrismas and Yahr, 2025). This highlights the complex microbial diversity within lichens. Transcriptomic analysis identified gene functions associated with the symbiotic state showing that the gene expression of the lichen fungus varies between developmental stages. Specific genes related to transporter functions, cell signaling, transcriptional regulation and secondary metabolism were differentially expressed. They defined both substrate-specific and core microbial components of the lichen, indicating that the growth substrate influences the taxonomic composition of lichen-associated microorganisms. In addition, they identified genes involved in different stages of the lichen thallus as well as proteins which may be involved in symbiosis. These findings provide insights into the complexity of lichen symbiosis and the molecular mechanisms underlying lichen development and growth. Functional analyses, fluorescent *in situ* hybridisation and immunostaining with high resolution microscopy visualising RNA localisation and protein distribution of the genes and key regulators will undoubtedly advance our understanding of lichen biology, evolution, ecology and conservation.

While much of the research on viruses in lichens is still in early stages there are several proposed roles they might play.

bacterial strains, viruses may shape the microbial community composition, which in turn affects the lichen's overall function and resilience. Some viruses can facilitate horizontal gene transfer between different species, promoting genetic diversity in

the microbial community. This can lead to the acquisition of beneficial traits, such as stress resistance or enhanced nutrient processing, potentially improving the overall health and adaptability of the lichen. Viral infections could influence the interactions between the fungal and photobiont components of lichens and thus affect how lichen symbionts respond to environmental stressors like desiccation, UV radiation or temperature fluctuations. In some symbiotic systems viruses are thought to impact the production of secondary metabolites. These metabolites can have antimicrobial, antifungal or UV protective properties, which are critical for the survival and ecological success of lichens in stressful environments. Research into the role of viruses in lichen symbiosis is still developing and much remains to be understood regarding their specific mechanisms of influence and their ecological implications. However, their potential roles in regulating symbiosis, promoting gene transfer, and contributing to stress adaptation are exciting avenues for future studies.

As mentioned by Hawksworth and Grube (2020) it remains a major scientific challenge to uncover regulatory relationships among the components and to understand the physiological processes within complex lichen symbioses. Lichen taxonomy is at a turning point, moving from traditional morphological approaches toward an integrative model combining genomics, chemistry and ecology. While challenges like diversity and environmental plasticity remain, advances in molecular biology, bioinformatics and AI offer promising solutions. Future research will likely redefine species boundaries and deepen our understanding of lichen symbioses and phenotypic plasticity.

Acknowledgement

I thank Dr. Nathan Chrismas and Dr. David Wilkinson for constructive comments.

References

Spribille *et al.* (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. *Science* **353**: 488–492.

Mark *et al.* (2020) Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. *New Phytologist* **227**: 1362–1375.

Hawksworth & Grube (2020) Lichens redefined as complex ecosystems *New Phytologist* **227**: 1281–1283.

Simon *et al.* (2019) Host-microbiota interactions: from holobiont theory to analysis *Microbiome* **7**: 5.

Grimm *et al.* (2021) The lichens microbiota, still a mystery? *Frontiers in Microbiology* **12**: 623839. <https://doi.org/10.3389/fmicb.2021.623839>.

Bjelland *et al.* (2011) Microbial metacommunities in the lichen–rock habitat. *Environmental Microbiology Report* **3**: 434–442.

Miral *et al.* (2022) *Rhizocarpon geographicum* lichen discloses a highly diversified microbiota carrying antibiotic resistance and persistent organic pollutant tolerance. *Microorganisms* **10**: 1859. <https://doi.org/10.3389/fmicb.2021.623839>.

Rolshausen *et al.* (2023) Lichen holobionts show compositional structure along

elevation. *Molecular Ecology* **32**: 6619–6630.

Tagirdzhanova *et al.* (2025) Complexity of the lichen symbiosis revealed by metagenome and transcriptome analysis of *Xanthoria parietina*. *Current Biology* **35**: 799–817.

Chrismas & Yahr (2025) Genomics: a window into the molecular mystery box of lichen symbiosis. *Current Biology* **35**: R139–R158.

Urayama *et al.* (2020) Diverged and active partitiviruses in lichen. *Frontiers in Microbiology* **11**: 561344. <https://doi.org/10.3389/fmicb.2020.561344>.

Dominik *et al.* (2021) Virus diversity in metagenomes of a lichen symbiosis (*Umbilicaria phaea*): complete viral genomes, putative hosts and elevational distributions *Environmental Microbiology* **23**: 6637–6650.

Qiling Xu

qxu957@gmail.com

Dundreggan – BLS field meeting (12th–18th October 2024)

Dundreggan group (L-R) Christine Matheson, Pete Martin, Caz Walker, Chris Cant, Heather Paul, Andy McLay, Graham Boswell, Oliver Moore, Becky Williamson, James Paton, Eluned Smith, Andrew Hodgkiss, Paul Cannon, Brian Coppins, Janet Brinklow, Richard Brinklow. Also attending; Alison Adams, Joanna Kruk, Maddie Geddes-Barton & baby Maud, Mark Stephens, Mark Thomas, Simon King, Sue Thomas and Susie Smith. Photo © S. Smith

The Autumn 2024 BLS Field Meeting was based at the Trees for Life Dundreggan Rewilding Centre in Glen Moriston. Accommodation was in a very modern block (with huge beds); we ate and stared down microscopes in an equally modern centre about 300m away. The quick way between the two led beneath extravagant juniper and birch woods; a slightly longer way passed along a lime avenue with a wall boasting lots of *Lobarina scrobiculata*. We were surrounded by autumn colour; a myriad of yellows on the birches, aspens, limes and beeches. Stags roared call and response across the glen. The weather played ball: most of our days were fine and dry.

Lob scrob wall
Photo © C. Cant

Day 1: birch and moorland

Initial explorations aside, the first morning was devoted to getting to grips with the Dundreggan estate (NH3214, NH3215). Within 200m of leaving the morning rendezvous the party had split into two: our half climbed slowly through birch woods dripping with *Evernia*, *Hypogymnia*, *Bryoria*, *Platismatia glauca* and *Usnea*. Highlights included prolific *Mycoblastus sanguinarius* and *M. affinis*, exuberant *Sphaerophorus globosus* and occasional *Lobarion*. We reached the tree line just before lunch and found ourselves in a saxicolous wonderland: *Cetraria muricata*; lots of *Umbilicaria polyrrhiza*; *Pycnothelia papillaria* and abundant *Cladonia strepsilis* with its distinctive green C reaction. Higher up, the plates of *Parmelia saxatilis* became huge; we found *P. discordans* too (fewer pseudocyphellae than *P. omphalodes* and K- medulla) and the *Umbilicaria polyrrhiza* became fertile (with intricate knotwork patterns on the apothecia). The summit of Binnilidh Bheag had a little *Ochrolechia frigida*, *Cornicularia normoerica* and *Ophioparma ventosa*. Our draft list had well over 100 species for the day. Back in the lab it was very satisfying to key out *Buellia erubescens* from one of the birches higher up.

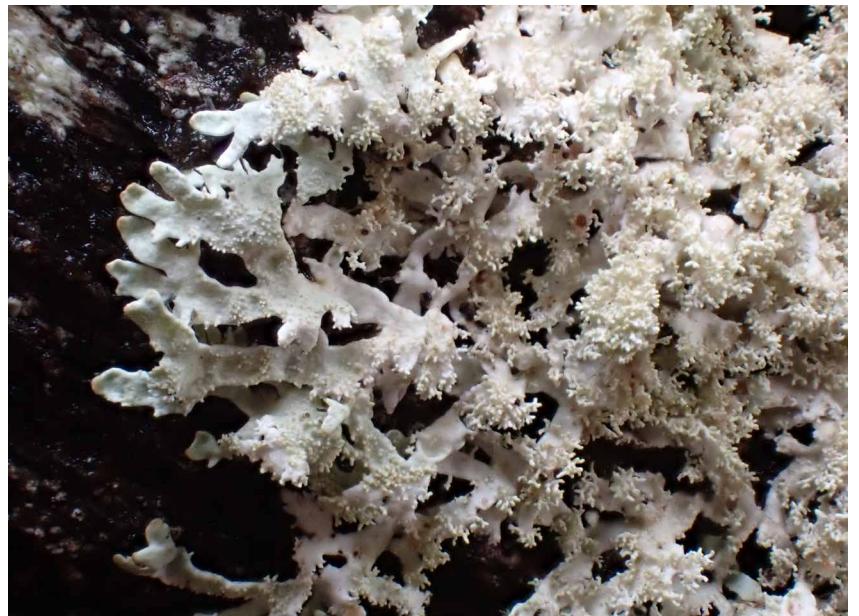
Day 2: Loch Ness woodlands

The start to the day can only be described as chaotic. In scenes worthy of the Keystone Cops, cars drove hither and thither around Drumnadrochit, messages were shouted down streets, a convoy of vehicles arrived at the wrong isolated building. Most of the

morning had passed before we finally made it to Bunloit (NH504.252) where a couple of hours were passed pleasantly on a steeply wooded slope. There was *Blastenia lauri* and *Ramalina calicaris*, the ubiquitous Lob scrob, *Coniocarpon cinnabarinum* and *Nephroma parile*. April Windle and John Douglass had spent 6 days here and still not visited every part of the estate; we didn't even start to scratch the surface.

But then it was back to Drumnadrochit. Some folk had already started on the aptly named Kilmore cemetery, but the main event was the Urquhart Bay woodlands (NH5129 and 5229), described as “one of the foremost wet woodlands in Europe”. It’s a dynamic, tangled landscape where rivers meet and form a delta at the entrance to Loch Ness. The Woodland Trust noticeboard at the entrance asked if we could spot any lichens. We tried our best. Notable, to me, species included fertile *Peltigera collina*; *Megalaria pulverea* and *grossa*; *Fuscopannaria ignobilis* and *mediterranea*. The woods are badly affected by ash dieback so it was good to see the latter growing on willow. On the other hand there’s always the threat of beavers. If *Chalara* don’t get it, maybe *Castor* will...

Day 3: pines and a wall


Pinewoods were billed as the main event for the day, though a party went off along the Loch Quoich road to investigate an upland area with no records where a hydro scheme is planned (Loch Fearn: NH0503). Most of us – including local organiser, Maddie and new arrival, Maud – found ourselves at Torgyle Bridge (NH309129), just a couple of

Ochrolechia frigida Photo © C. Cant

Left; *Blastenia lauri* and right; steep slopes of Bunloit Photos © P. Martin

Ghostly white
Imshaugia
aleurites
Photo © P. Martin

miles along Glen Moriston. Heather quickly pointed out *Cetraria sepinctola* on birch twigs. This eastern Highland species was new to most of us and a delight, with golden brown lobes off the main thallus. A mile or so stroll along the gated road produced a number of *Peltigeras* and species on rocks and pines, before we came to a rather fine stone wall. How many lichenologist hours were spent on this wall? It boasted a plethora of saxicolous species; everyone present will have their own favourite memories. Mine were the *Miriquidica leucophaea*; *Schaereria cinereorufa*; *Umbilicaria proboscidea* and adjacent thalli of *Parmelia omphalodes* and *P. discordans*. Through a gate and over a bridge, some

Dundreggan, Torgyle Wall Photo © B. Williamson (L-R) Heather Paul, Pete Martin, Janet Brinklow, Richard Brinklow, Maddie Geddes- Barton, baby Maud, Joanna Kruk, Susie Smith, Eluned Smith

Bryoria capillaris Photo © C. Cant

of us climbed through the biggest patch of girolles (*Cantharellus cibarius*) I have ever seen to catch up with an advance party in the pinewood for lunch.

There was *Imshaugia aleurites* and *Parmeliopsis hyperocea*. Further climbing brought us to a burnside where Brian Coppins spotted *Bryoria capillaris* hanging pale in the trees. The party gradually reduced in number as we climbed further up the burn. We found a dramatic patch of *Peltigera britannica*, bright green on an alder and nearby boulders. Nearby was the brownish cyanobacterial morph with tiny green lobes hanging off the ends. *Psoroma hypnorum* was found too, before we finally called it a day and descended. to spend some more time looking along that wall...

Day 4: a broch and a garden

The plan for the wet day was to go west to Glenelg on the coast opposite Skye. The forecast rain didn't, in the end, amount to much, though the Kintail hills were shrouded in cloud as we progressed along Glen Shiel and over the Mam Ratagan. We

rendezvoused at Dun Troddan (NG833.172), a particularly impressive example of a broch, an iron age double-walled round tower. The walls occupied us for the morning; there were good examples of many *Lobarioid* species such as *Pannaria conoplea*, *Ricasolia laetevirens* and *Nephroma laevigata*, together with acid rock species. Where the conservators had introduced mortar there was a number of lime-loving *Verrucaria* and *Caloplaca* species. A nearby sycamore had *Cetrelia olivetorum* s.l.; an oak boasted all four *Lobaria* species (as they used to be) plus *Parmeliella parvula*.

The afternoon saw the group split: some went to nearby Dun Telve; others to a ravine in the nearby woodland. A convoluted series of distractions, chance meetings and cattle with calves on the road led to four of us recording in a garden. A frantic couple of hours produced a list of 75 species including *Menegazzia terebrata*, *Pseudocyphellaria citrina* (was *crocata*), three "Lobaria" species, *Ramalina calicaris* and *Usnea hirta*.

Meanwhile, back in Glen Moriston, Chris and Caz had been busy on the hills, finding large quantities of *Alectoria nigricans*. A trackside *Stereocaulon* was revealed to be *S. glareosum*, with startling bright pink cephalodia.

Day 5: laybys

Fine weather returned. The main billing was for another drive to the west: Balmacara woods (NG8029) but some of us had a long day's drive home looming the following day, and there were much nearer spots that had been recce'd by Maddie... so Chris, Caz, Heather and I decided to explore the laybys of Glen Moriston (NH3615 and eastwards).

In the end we did five, gathering an impressive array of species. Amongst the copious *Lobaria* (and more) the highlights included ghostly *Imshaugia aleurites*, *Peltigera leucophlebia* and *Bryoria capillaris* not far below the dam. Further east, there were swards of *Cladonia rangiformis* on the verges (presumably the salt helps create a favourable habitat) and we found *Fuscopannaria mediterranea* and *F. ignobilis* on two trees each. The original intention had been to try and make it to the Invermoriston falls...but we ran out of time.

Back at base a large patch of a *Fuscopannaria* had been found on one of the trees in the avenue: this was eventually determined by Brian to be *F. ignobilis*.

Richard and Janet Brinklow had been exploring further west along Glen Moriston and on the tracks up towards the Millennium wind farm. Apart from abundant ticks, they found rarities for the week: *Xanthoria parietina*, *Physcia* species and *Arthonia radiata* on planted sycamores and crab apples.

Thank you to everyone who came on the trip for a very enjoyable few days, but particularly to Graham Boswell and Maddie Geddes-Barton for all the work they put in with the organisation and Brian Coppins for the listing and identifications.

Pete Martin
thorncottage@hotmail.com

Table of taxa for Dundreggan field meeting October 2024

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Abrothallus cetrariae</i>			●						
<i>Abrothallus parmeliarum</i>	●					●			
<i>Abrothallus usneae</i>	●								
<i>Acrocordia gemmata</i>			●	●					
<i>Agonimia tristicula</i>							●		
<i>Agyrium rufum</i>						●			
<i>Alectoria nigricans</i>	●								
<i>Allantoparmelia alpicola</i>						●			
<i>Alyxoria culmigena</i>		●							
<i>Alyxoria ochrocheila</i>			●						
<i>Alyxoria varia</i>			●						

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Amandinea punctata</i>									
<i>Andreomyces obtusatus</i>		●							
<i>Anisomeridium biforme</i>		●							
<i>Anisomeridium polypori</i>									●
<i>Anisomeridium ranunculosporum</i>						●			●
<i>Aquacidia viridifarinosa</i>									●
<i>Arctoparmelia incurva</i>	●								
<i>Arthonia atra</i>				●	●	●			
<i>Arthonia didyma</i>				●			●		●
<i>Arthonia radiata</i>				●	●	●			●
<i>Arthonia vinosa</i>	●					●			
<i>Arthopyrenia anallepta</i>	●					●			
<i>Arthopyrenia cinereopruinosa</i>						●			
<i>Arthrorhaphis citrinella</i>							●	●	
<i>Bachmanniomyces punctum</i>							●		
<i>Bacidia absistens</i>	●								
<i>Bacidia arceutina</i>					●	●			
<i>Baeomyces rufus</i>	●				●	●		●	●
<i>Biatora globulosa</i>	●								
<i>Biatoropsis usnearum</i>	●								
<i>Bilimbia sabuletorum</i>						●			
<i>Blastenia lauri</i>	●				●	●			●
<i>Bryoria capillaris</i>						●			●
<i>Bryoria fuscescens</i>	●			●	●		●	●	
<i>Bryoria subcana</i>	●								
<i>Buellia disciformis</i>	●			●	●				●
<i>Buellia erubescens</i>	●								
<i>Buellia schaereri</i>	●								●
<i>Calicium glaucellum</i>	●		●	●			●		
<i>Calicium viride</i>	●		●	●					

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Caloplaca arnoldii</i> subsp. <i>oblitterata</i>							●		
<i>Caloplaca citrina</i> s. lat.			●					●	
<i>Caloplaca crenularia</i>								●	
<i>Caloplaca flavocitrina</i>								●	
<i>Caloplaca holocarpa</i> s. lat.					●				
<i>Calvitimela aglaea</i>	●					●			
<i>Candelariella coralliza</i>						●			
<i>Candelariella vitellina</i> f. <i>vitellina</i>			●		●			●	
<i>Catinaria atropurpurea</i>								●	
<i>Cetraria aculeata</i>	●		●			●			
<i>Cetraria islandica</i> subsp. <i>islandica</i>	●					●			
<i>Cetraria muricata</i>	●					●	●		
<i>Cetraria sepincola</i>						●			
<i>Cetrelia olivetorum</i> s. lat.								●	
<i>Chaetheca brunneola</i>	●								
<i>Chaetheca chrysocephala</i>	●								
<i>Chaetheca ferruginea</i>			●			●			
<i>Chrysotrichia candelaris</i>	●	●	●						
<i>Chrysotrichia flavovirens</i>	●	●					●		
<i>Circinaria caesiocinerea</i>						●		●	
<i>Circinaria contorta</i>			●						
<i>Cladonia arbuscula</i> subsp. <i>squarrosa</i>	●					●			
<i>Cladonia bellidiflora</i>	●					●			
<i>Cladonia cervicornis</i>	●					●			
<i>Cladonia chlorophaea</i> s. lat.	●				●	●			
<i>Cladonia ciliata</i> var. <i>ciliata</i>	●					●			
<i>Cladonia ciliata</i> var. <i>tenuis</i>	●		●			●			
<i>Cladonia coccifera</i> s. lat.	●				●				

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Cladonia coniocraea</i>									
<i>Cladonia crispata</i> var. <i>cetrariiformis</i>	●							●	
<i>Cladonia digitata</i>									
<i>Cladonia diversa</i>	●						●		
<i>Cladonia fimbriata</i>						●			
<i>Cladonia floerkeana</i>	●					●		●	
<i>Cladonia furcata</i> subsp. <i>furcata</i>	●							●	
<i>Cladonia gracilis</i>	●					●		●	
<i>Cladonia humilis</i>									●
<i>Cladonia macilenta</i>	●							●	
<i>Cladonia polydactyla</i>	●	●				●		●	●
<i>Cladonia portentosa</i>	●					●		●	
<i>Cladonia pyxidata</i>	●						●	●	
<i>Cladonia ramulosa</i>								●	
<i>Cladonia rangiferina</i>	●							●	
<i>Cladonia rangiformis</i>						●			
<i>Cladonia scabriuscula</i>	●								
<i>Cladonia squamosa</i> s. lat.								●	
<i>Cladonia squamosa</i> var. <i>squamosa</i>	●					●		●	
<i>Cladonia squamosa</i> var. <i>subsquamosa</i>								●	
<i>Cladonia strepsilis</i>	●					●			●
<i>Cladonia subcervicornis</i>	●					●			●
<i>Cladonia subulata</i>	●					●		●	
<i>Cladonia uncialis</i> subsp. <i>biuncialis</i>	●							●	
<i>Cladonia verticillata</i>	●							●	
<i>Cliostomum griffithii</i>	●	●			●			●	
<i>Collema furfuraceum</i>									●

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Collema subflaccidum</i>							●		
<i>Coniocarpon cinnabarinum</i>	●		●						
<i>Coniocarpon fallax</i>			●						
<i>Cornicularia normoerica</i>	●				●	●			
<i>Crutarndina petractoides</i>									●
<i>Cystocoleus ebeneus</i>					●				
<i>Dactylospora parasitica</i>	●								
<i>Dibaeis baeomyces</i>	●		●			●			
<i>Diploschistes scruposus</i>	●				●	●			
<i>Enterographa zonata</i>			●		●			●	
<i>Ephebe lanata</i>	●		●			●			
<i>Evernia prunastri</i>	●	●	●	●	●	●	●	●	
<i>Exarmidium inclusum</i>					●				
<i>Flavoparmelia caperata</i>								●	
<i>Fuscidea cyathoides</i> var. <i>cyathoides</i>	●		●		●	●		●	
<i>Fuscidea gothoburgensis</i>					●				
<i>Fuscidea kochiana</i>						●			
<i>Fuscidea lightfootii</i>	●		●		●		●	●	
<i>Fuscidea lygaea</i>						●			
<i>Fuscopannaria ignobilis</i>			●	●					
<i>Fuscopannaria mediterranea</i>	●	●	●	●					
<i>Gabura fascicularis</i>								●	
<i>Graphis betulina</i>		●	●					●	
<i>Graphis elegans</i>			●						
<i>Graphis pulverulenta</i>							●		
<i>Graphis scripta</i> s. lat.							●		
<i>Graphis scripta</i> s. str.			●						
<i>Gyalecta jenensis</i> var. <i>jenensis</i>			●						
<i>Gyrographa gyrocarpa</i>	●		●		●			●	

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Homostegia piggotii</i>	●								
<i>Hypocemyce scalaris</i>			●				●		
<i>Hypogymnia physodes</i>	●		●	●	●	●	●	●	●
<i>Hypogymnia tubulosa</i>	●			●					
<i>Hypotrichyna laevigata</i>									
<i>Hypotrichyna sinuosa</i>									
<i>Icmadophila ericetorum</i>	●		●				●	●	
<i>Immersaria athroocarpa</i>						●		●	
<i>Imshaugia aleurites</i>						●		●	
<i>Ionaspis lacustris</i>	●		●					●	
<i>Japewia subaurifera</i>	●								
<i>Lambiella furvella</i>	●							●	
<i>Lecanactis abietina</i>	●		●	●					●
<i>Lecania naegelii</i>									●
<i>Lecanora argentata</i>		●	●	●					●
<i>Lecanora chlorotera</i>	●		●	●					●
<i>Lecanora expallens</i>	●		●						●
<i>Lecanora farinaria</i>	●								
<i>Lecanora gangaleoides</i>									●
<i>Lecanora hybocarpa</i>	●								
<i>Lecanora intricata</i>	●							●	
<i>Lecanora jamesii</i>						●			●
<i>Lecanora orosthea</i>									●
<i>Lecanora phaeostigma</i>									●
<i>Lecanora polytropa</i>	●		●		●	●	●	●	●
<i>Lecanora pulicaris</i>	●								
<i>Lecanora sulphurea</i>							●		
<i>Lecidea fuscoatra</i> s. lat.	●								
<i>Lecidea grisella</i>	●						●		
<i>Lecidea lactea</i> s. str.	●						●		

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Lecidea lericida</i>									
<i>Lecidea lithophila</i>	●		●		●	●	●		
<i>Lecidea phaeops</i>	●								
<i>Lecidea swartzioidea</i>						●			
<i>Lecidea turgidula</i>		●						●	
<i>Lecidella elaeochroma</i> f. <i>elaeochroma</i>	●		●	●	●	●			●
<i>Lecidella scabra</i>									●
<i>Lecidella stigmataea</i>								●	
<i>Lepra albescens</i> var. <i>albescens</i>		●							●
<i>Lepra amara</i>	●	●	●	●					●
<i>Lepra aspergilla</i>	●							●	
<i>Lepra borealis</i>							●		
<i>Lepra corallina</i>	●		●			●	●		●
<i>Lepra multipuncta</i>			●						●
<i>Lepraria caesioalba</i>	●					●	●		
<i>Lepraria finkii</i>	●	●		●					●
<i>Lepraria incana</i> s. lat.	●		●						
<i>Lepraria incana</i> s. str.	●								
<i>Lepraria jackii</i>							●		
<i>Lepraria membranacea</i>			●						
<i>Lepraria umbricola</i>	●								
<i>Leptogium brebissonii</i>								●	
<i>Leptogium burgessii</i>								●	
<i>Leptogium cyanescens</i>								●	
<i>Leptogium hibernicum</i>								●	
<i>Licheconium erodens</i>	●					●			
<i>Lichemphalia umbellifera</i>	●						●		
<i>Lithocalla ecorticata</i>	●							●	
<i>Lobaria pulmonaria</i>	●	●	●	●					●

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Lobarina scrobiculata</i>	●								
<i>Lopadium disciforme</i>	●	●	●						●
<i>Loxospora elatina</i>	●	●	●						●
<i>Megalaria grossa</i>						●			
<i>Megalaria pulvrea</i>						●	●		●
<i>Melanelixia fuliginosa</i>	●					●	●		●
<i>Melanelixia glabratula</i>	●	●				●	●		●
<i>Melanelixia subaurifera</i>	●	●				●	●		●
<i>Melahalea exasperata</i>						●	●		●
<i>Menegazzia terebrata</i>									●
<i>Micarea adnata</i>						●			●
<i>Micarea alabastites</i>	●						●		●
<i>Micarea coppinsii</i>	●								
<i>Micarea leprosula</i>	●					●		●	
<i>Micarea lignaria</i> var. <i>lignaria</i>	●					●		●	●
<i>Micarea prasina</i> s. lat.						●		●	
<i>Micarea ternaria</i>								●	
<i>Microcalicium disseminatum</i>						●			
<i>Miriquidica leucophaea</i>	●						●	●	●
<i>Miriquidica pycnocarpa</i> f. <i>sorediata</i>								●	
<i>Muellerella ventosicola</i>	●								
<i>Mycobilimbia epixanthoides</i>						●	●		
<i>Mycobilimbia sphaeroides</i>							●		
<i>Mycoblastus affinis</i>	●								
<i>Mycoblastus caesius</i>	●					●			●
<i>Mycoblastus sanguinarius</i> f. <i>sanguinarius</i>	●	●	●				●	●	●
<i>Mycoglaena myricae</i>	●						●		
<i>Mycoporum antecellens</i>	●							●	
<i>Myriolecis dispersa</i>									●

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Nephroma laevigatum</i>	●								
<i>Nephroma parile</i>		●		●				●	
<i>Nesolechia oxyspora</i>	●								
<i>Nevesia sampaiana</i>	●							●	
<i>Normandina chlorococca</i>		●							
<i>Normandina pulchella</i>		●	●	●				●	
<i>Ochrolechia androgyna</i>	●	●	●	●	●	●	●	●	
<i>Ochrolechia frigida f. frigida</i>	●					●			
<i>Ochrolechia frigida f. lapuensis</i>	●					●			
<i>Ochrolechia microstictoides</i>	●						●		
<i>Ochrolechia parella</i>	●	●			●			●	
<i>Ochrolechia subviridis</i>		●						●	
<i>Ochrolechia szatalaensis</i>	●		●						
<i>Ochrolechia tartarea</i>	●		●			●	●	●	
<i>Ochrolechia xanthostoma</i>	●								
<i>Opegrapha vulgata</i>				●				●	
<i>Ophioparma ventosa</i>	●					●	●		
<i>Pachyphiale carneola</i>		●							
<i>Pannaria conoplea</i>			●	●				●	
<i>Pannaria rubiginosa</i>	●		●	●				●	
<i>Parmelia discordans</i>	●					●	●		
<i>Parmelia omphalodes</i>	●		●			●	●		●
<i>Parmelia saxatilis s. lat.</i>	●	●	●		●	●	●	●	
<i>Parmelia sulcata</i>	●	●	●	●	●	●	●	●	
<i>Parmeliella parvula</i>								●	
<i>Parmeliella testacea</i>								●	
<i>Parmeliella thriptophylla</i>				●	●			●	
<i>Parmeliopsis ambigua</i>	●								
<i>Parmeliopsis hyperoxta</i>	●		●				●		
<i>Parmotrema crinitum</i>								●	

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Parmotrema perlatum</i>	●								
<i>Pectenia atlantica</i>									●
<i>Pectenia cyanoloma</i>									●
<i>Pectenia plumbea s. str.</i>	●					●	●		●
<i>Peltigera britannica</i>									●
<i>Peltigera canina</i>	●					●	●		●
<i>Peltigera collina</i>							●		●
<i>Peltigera horizontalis</i>						●			
<i>Peltigera hymenina</i>	●					●	●	●	●
<i>Peltigera leucophlebia</i>						●			
<i>Peltigera membranacea</i>	●					●	●	●	●
<i>Peltigera praetextata</i>							●		
<i>Peltigera rufescens</i>									●
<i>Pertusaria hymenea</i>						●			●
<i>Pertusaria leioplaca</i>	●					●	●		●
<i>Pertusaria pertusa</i>	●					●	●		●
<i>Pertusaria pseudocorallina</i>	●								●
<i>Pertusaria pupillaris</i>	●								
<i>Phaeocalicium praecedens</i>	●								
<i>Phlyctis argena</i>	●					●	●		
<i>Phyllopsora rosei</i>									●
<i>Physcia adscendens</i>							●		
<i>Physcia aipolia</i>						●			●
<i>Physcia caesia</i>								●	●
<i>Physcia dubia</i>									●
<i>Physcia tenella</i>						●			
<i>Physconia distorta</i>						●			●
<i>Pilophorus strumaticus</i>									●
<i>Placopsis</i>	●								
<i>Placopsis lambii</i>	●					●		●	

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Placynthiella dasaea</i>	●								
<i>Placynthiella icmalea</i>	●								
<i>Placynthiella uliginosa</i>	●								
<i>Platismatia glauca</i>	●	●	●		●	●	●	●	
<i>Plectocarpon lichenum</i>				●					●
<i>Plectocarpon scrobiculatae</i>		●							
<i>Porina aenea</i>								●	
<i>Porpidia cinereoatra</i>	●				●	●		●	
<i>Porpidia hydrophila</i>						●			
<i>Porpidia macrocarpa</i> f. <i>macrocarpa</i>	●				●		●		
<i>Porpidia melinodes</i>	●					●	●		
<i>Porpidia tuberculosa</i>	●		●			●			●
<i>Protoblastenia rupestris</i>			●		●				
<i>Protopannaria pezizoides</i>			●						●
<i>Protoparmelia badia</i>	●		●		●				
<i>Protoparmelia ochrococca</i>	●	●	●						
<i>Protothelenella corrosa</i>	●								
<i>Pseudephebe pubescens</i>	●					●			
<i>Pseudevernia furfuracea</i> s. lat.	●		●		●	●	●		
<i>Pseudevernia furfuracea</i> var. <i>furfuracea</i>	●								
<i>Pseudocyphellaria citrina</i>								●	
<i>Pseudocyphellaria norvegica</i>								●	
<i>Pseudoschismatomma rufescens</i>				●					
<i>Psilolechia lucida</i>	●	●	●		●			●	
<i>Psoroma hypnorum</i>			●				●		
<i>Pythelia papillaria</i>	●		●			●			
<i>Pyrenula laevigata</i>								●	
<i>Pyrenula occidentalis</i>							●	●	

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Pyrrhospora quernea</i>									
<i>Raesaeenia huuskonenii</i>								●	
<i>Ramalina calicaris</i>						●			●
<i>Ramalina farinacea</i>		●				●	●	●	●
<i>Ramalina fastigiata</i>						●	●		
<i>Ramalina fraxinea</i>						●			
<i>Ramalina siliquosa</i>									●
<i>Reichlingia anombrophila</i>						●			
<i>Rhizocarpon geographicum</i>	●					●	●	●	●
<i>Rhizocarpon lavatum</i>	●					●			
<i>Rhizocarpon lecanorinum</i>	●								
<i>Rhizocarpon oederi</i>								●	
<i>Rhizocarpon reductum</i>						●		●	●
<i>Rhizocarpon sublavatum</i>								●	
<i>Ricasolia amplissima</i>									●
<i>Ricasolia virens</i>									●
<i>Rimularia intercedens</i>									●
<i>Ridina oleae</i>							●		●
<i>Ridina sophodes</i>									●
<i>Schaereria cinereorufa</i>					●			●	●
<i>Schaereria fuscocinerea</i> var. <i>fuscocinerea</i>					●			●	●
<i>Schismatomma ricasolii</i>						●			
<i>Schismatomma umbrinum</i>								●	●
<i>Sclerococcum sphaerale</i>	●					●		●	●
<i>Scytinium gelatinosum</i>								●	●
<i>Scytinium lichenoides</i>					●	●			●
<i>Scytinium pulvinatum</i>							●		
<i>Scytinium teretiusculum</i>									●
<i>Sphaerellothecium araneosum</i>	●								
<i>Sphaerophorus fragilis</i>	●							●	

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Sphaerophorus globosus</i>	●				●				
<i>Stenocybe nitida</i>								●	
<i>Stenocybe pullatula</i>			●				●	●	
<i>Stereocaulon</i>	●								
<i>Stereocaulon condensatum</i>						●			
<i>Stereocaulon dactylophyllum</i> var. <i>dactylophyllum</i>	●		●		●	●			
<i>Stereocaulon evolutum</i>	●								
<i>Stereocaulon glareosum</i>	●								
<i>Stereocaulon vesuvianum</i> var. <i>nodulosum</i>	●								
<i>Stereocaulon vesuvianum</i> var. <i>vesuvianum</i>	●		●		●	●			
<i>Sticta</i>			●						
<i>Sticta canariensis</i> (<i>dufourii</i>)							●		
<i>Sticta fuliginoides</i>							●		
<i>Sticta fuliginosa</i> s. lat.		●					●		
<i>Sticta fuliginosa</i> s. str.							●		
<i>Sticta limbata</i>	●						●		
<i>Sticta sylvatica</i>		●					●		
<i>Tephromela atra</i> var. <i>atra</i>				●					
<i>Thelotrema lepadinum</i>	●	●	●	●			●	●	
<i>Thelotrema lueckingii</i>			●						
<i>Toniniopsis aromatica</i>								●	
<i>Trapelia corticola</i>	●						●	●	
<i>Trapelia glebulosa</i> s. lat.	●		●			●			
<i>Trapelia placodioides</i>						●			
<i>Trapeliopsis flexuosa</i>	●								
<i>Trapeliopsis granulosa</i>	●					●			
<i>Trapeliopsis pseudogranulosa</i>	●		●			●	●	●	
<i>Tremella hypogymniae</i>	●				●		●		

Taxon name	Dundreggan Estate	Bunloit	Glen Moriston	Urquhart Bay woods	Kilmore old cemetery	Inverwick roadside	Loch Fearn	Inverwick Forest	Glen Elg
<i>Tremolecia atrata</i>	●		●						
<i>Tuckermanopsis chlorophylla</i>	●		●				●	●	●
<i>Umbilicaria cylindrica</i>	●				●			●	●
<i>Umbilicaria polyphylla</i>	●		●				●	●	●
<i>Umbilicaria polyrrhiza</i>	●							●	●
<i>Umbilicaria proboscidea</i>	●							●	●
<i>Umbilicaria torrefacta</i>	●							●	
<i>Unguiculariopsis lettaui</i>	●								●
<i>Usnea cornuta</i> s. lat.	●					●		●	●
<i>Usnea dasopoga</i>	●				●	●	●	●	●
<i>Usnea glabrescens</i>									●
<i>Usnea hirta</i>									●
<i>Usnea subfloridana</i>	●	●	●		●	●	●	●	●
<i>Vahliella atlantica</i>									●
<i>Varicellaria hemisphaerica</i>	●								
<i>Varicellaria lactea</i>	●					●			
<i>Verrucaria fusconigrescens</i>									●
<i>Verrucaria nigrescens</i> f. <i>nigrescens</i>						●			
<i>Vouauxiella lichenicola</i>					●				
<i>Wadeana minuta</i>	●								
<i>Xanthoparmelia mougeotii</i>	●				●	●	●		
<i>Xanthoria parietina</i>						●			●
<i>Xanthoria ucrainica</i>	●				●	●			
<i>Xenectriella fissuriprodiens</i>							●		
<i>Xylographa parallela</i>								●	●
<i>Xylographa trunciseda</i>									●
<i>Xylographa vitiligo</i>		●							
<i>Xylopsora friesii</i>								●	
<i>Zwackhia soredifera</i>		●							

Post-AGM Field Meeting – Kensington Gardens, London, 12th January 2025

Kensington Gardens together with Hyde Park is the largest park in central London, a combined area of 247 hectares. The Gardens were originally part of Hyde Park, one of Henry VIII's hunting parks. The western part of the park became Kensington Gardens around 1690 when Kensington Palace was developed and became more formal in character. The Serpentine Lake which separates the Gardens from Hyde Park was built in the early 1700s. In 1841 the Gardens were opened to 'respectably dressed' members of the public on Saturdays only. Today they are a hub of manic activity, especially at weekends when runners, dog walkers and families crowd the paths.

Back row from left; Charles Hunt, Daisy Baggs, Snezhina Popova, Jo Kruk, Margaret Chapman, Sascha Hellmann-Hansen, Mary Steer. Next row; Chris Cant, Lindsey Mahon, Sylvia Davidson, Tamsin Green, Isobel Clark, Nathan Chrismas, David Hill, Cassie Laughlin, William Purvis, Rolf Gademann. Next row; Mhairi Salmon, Anthony Speca, Jacq Lavender, Eluned Smith, Sarah Pietsch, Emry Benbow, Eric Steer, Fay Newbery, Allan Green, John Skinner. Front row; Judith Allinson, Andrea Goss, Jimmy Paton, Pat Wolseley, Sim Elliot, Susan-Mary Benbow, Maxine Putnam, Paul Cannon, April Windle.

So it was that 42 respectably dressed lichenologists met at the Albert Memorial for the post-AGM field meeting where we were welcomed by the Royal Parks representative, Gemma Hindi. It was a very social occasion with meetings of friends and others who knew each other only from online Zoom meetings. Judith Allinson organised an historic photograph before we split into groups, each group having a map in order to record the lichens in the area covered. Recording was made quite difficult by the freezing cold weather and a heavy frost covering surfaces.

The area covered was within the National Grid squares TQ 2679 and TQ 2680 and records were made within these squares from thirteen 100m squares (hectares). Full details were included on the BLS database.

Although there has not been any systematic lichen recording in Kensington Gardens and Hyde Park, there have been occasions when lichens have been recorded. These have provided useful information on changes in the lichen flora over the years, particularly as central London was, in the early 1960s, one of the areas in Britain most heavily polluted by sulphur dioxide. Recorders have included Jack Laundon, David Hawksworth, C.I. Rose and Paulette McManus, Pat Wolseley, William Purvis and Holger Thüs and, most recently, Mark Powell. Early studies by Rose and Hawksworth in sites around London, including Hyde Park in 1979, showed the absence of lichens from the centre of London following the Clean Air Act of 1956 that reduced atmospheric sulphur dioxide (1981). Later studies by Hawksworth and McManus (1988) showed that species like *Evernia prunastri* and *Flavoparmelia caperata* were appearing in Hyde Park but were still rare. The most recent study by Mark Powell in 2018 did not record these species while his survey showed an increase in the number of common nitrophilous species. We have included data from his report and previous data, where present, to illustrate changes in the lichens in a central London park.

Annotated list of lichens found in Kensington Gardens on 12 January 2025

The list is split into two, corticolous and saxicolous. Reference is made to finds by Mark Powell in 2018 (made from Hyde Park), Wolseley, Purvis and Thüs in 2008, an unknown recorder in 2003 and Hawksworth and McManus in 1988, again in Hyde Park.

Corticulous lichens

Abbreviations of tree genera are as used on the BLS recording spreadsheet: Ae (*Aesculus*), Cp (*Carpinus*), Ct (*Castanea*), Pl (*Platanus*), Pr (*Prunus*), Sorbus, Q (*Quercus*) and Ti (*Tilia*).

Amandinea punctata

Ae, Cp, Pl. Found in two 100m squares. Recorded 2003, 2008 and 2018.

Arthonia radiata

Ti, Sorbus. Found in two 100m squares. No previous records.

Candelaria concolor

Cp, Ct, Pl, Pr, Q, *Q. cerris*, Ti. Found in seven 100m squares. Recorded 2008 and 2018. Now an abundant lichen in urban situations.

Candelariella xanthostigmoides

Pl. Found in two 100m squares. Recorded 2008 and 2018.

Catillaria nigroclavata

Pl, Pr. Found in two 100m squares. Recorded 2018. An inconspicuous lichen of nutrient-enriched bark that has become common only in recent years.

Diploicia canescens

Pl. Found in one 100m square. Recorded in 2018.

Evernia prunastri

Cp, Pl, Q, Ti. Found in four 100m squares. Recorded in 1988 only.

Flavoparmelia caperata

Cp, Pr, Q. Found in three 100m squares. Recorded in 2008 only.

Flavoparmelia soredians

Pl, Q, cerris. Found in two 100m squares. Recorded in 2018 only.

Glaucomaria carpinea

Cp, Ti. Found in two 100m squares. Recorded in 2008 and 2018.

Hypogymnia physodes

Ae, Q. Found in one 100m square. Recorded in 2003 only.

Hyperphyscia adglutinata

Ae, Ct, Pl, Pr, *Sorbus*, Ti. Found in six 100m squares. Recorded in 2008 and 2018. An abundant lichen in London.

Lecania cyrtella

Tree species not noted. Found in two 100m squares. No previous records.

Lecanora compallens

Ae, Cp, Ct, Pl, *Sorbus*. Found in five 100m squares. Recorded in 2008.

Lecanora hypocarpa

Ae, Cp, Pr, Q, Ti. Found in seven 100m squares. Two specimens checked microscopically.

Very similar to *L. chlarotera* which was recorded in 2008 and may have been this species.

Lecanora pulicaris

Substrate not recorded. Found in one 100m square. Recorded in 2018.

Lecanora symmicta

Q. Found in two 100m squares. Recorded in 2003 only.

Lecidella elaeochroma f. *elaeochroma*

Ae, Cp, Pr, Q, *Sorbus*, Ti. Found in six 100m squares. Recorded in 2008 and 2018.

Lepraria finkii

Ae, Cs. Found in two 100m squares. Recorded in 2018 only. It is likely that *L. incana*, recorded only in 1988, has been overlooked.

Melanelia glabratula

On a fallen branch. Found in one 100m square. Not previously recorded.

Melanelia subaurifera

Cp, Pl, Q, cerris. Found in three 100m squares. Recorded in 2003, 2008 and 2018.

Melanohalea elegantula

Q. Found in one 100m square. Recorded in 2018 only.

Myriolecis hagenii

Pl, Q. Recorded in two 100m squares. Recorded in 2018 only.

Opegrapha niveoatra

Pl. Found in three 100m squares. Recorded in 2018 only.

Parmelia sulcata

Cp, Pl, Q, Q, cerris, Ti. Found in six 100m squares. Recorded in 1988, 2003, 2008 and 2018. The first foliose lichen to appear as sulphur dioxide levels fell in London.

Parmotrema perlatum

Cp, Q. Found in two 100m squares. Only recorded previously in 2018 by Mark Powell on a saxicolous substrate.

Phaeophyscia orbicularis

Pl, *Sorbus*, Ti. Found in four 100m squares. Found in 2003, 2008 and 2018. Mark Powell found it with the lichenicolous fungus *Taeniolella phaeophysiae*.

Phlyctis argena

Cp. Found in one 100m square. No previous records.

Physcia adscendens

Ct, Pl, Ti. Found in five 100m squares. Recorded in 1988, 2003, 2008 and 2018.

Physcia aipolia

Cp, Pl, Q, cerris, Ti. Found in three 100m squares. Recorded in 2008 only. The lichenicolous fungi *Erithrycium aurantiacum* and *Illosporiopsis christiansenii* were recorded from this host on this visit.

Physcia tenella

Cp, Pl, Pr, Q, cerris, Ti. Found in seven 100m squares. Recorded in 1988, 2003 and 2018. The lichenicolous fungus *Laetesaria lichenicola* was recorded from this host on this visit and *Lichenochora physiicola* was recorded by Maxine Putnam near Hyde Park Corner.

Physconia grisea

Pl, Ti. Found in three 100m squares. Recorded in 2008 and 2018.

Punctelia borreri

Cp, Ti. Found in two 100m squares. No previous records of this lichen which seems to be steadily increasing its range.

Punctelia jeckeri

Pr. Found in two 100m squares. Recorded in 2018 only.

Punctelia subrudecta

Ae, Cp, Ct, Pl, Q, Ti. Found in five 100m squares. Recorded in 1988 and 2003 (before *P. jeckeri* was described) and 2018.

Ramalina fastigiata

Pl. Found in one 100m square. Recorded in 2018.

Xanthoria parietina

Ae, Cp, Ct, Pl, *Sorbus*, Q, cerris, Ti. Found in ten 100m squares. Recorded in 2003, 2008 and 2018. The lichenicolous fungus *Didymocyrtis slaptoniensis* was recorded from this host on this visit (Hyde Park).

A total of 37 corticolous lichens was recorded. Of these, five had not previously been recorded from Kensington Gardens or Hyde Park: *Arthonia radiata*, *Lecania cyrtella*, *Melanelia glabratula*, *Phlyctis argena* and *Punctelia borreri*.

Of the 12 lichens recorded from Hyde Park by Hawksworth and McManus in 1988, two have not been found recently: *Lecanora conizaeoides* and *Lepraria incana*, both tolerant of fairly high sulphur dioxide levels which of course have fallen dramatically since then.

Of the 21 corticolous lichens recorded by Wolseley, Purvis and Thüs in 2008, only one has not been recorded since: *Lecanora albella*.

In 2018, Mark Powell recorded 39 corticolous lichens in Hyde Park including 13 species not found by us: *Arthopyrenia punctiformis*, *Bacidina neosquamulosa*, *Cyrtidula quercus*, *Fuscidea lightfootii*, *Halecania viridescens*, *Hypogymnia tubulosa*, *Lecania naegelii*, *Hypotrachyna revoluta* s.str., *Lecanora barkmaniana*, *Lecanora expallens*, *Melanohalea exasperata*, *Scoliciosporum chlorococcum* and *Strigula taylorii*.

Saxicolous lichens

Almost all the saxicolous records were made from the sandstone parapets of the bridge over the Serpentine (TQ 269801 and TQ 269802) by David Hill's group, and some by Margaret Chapman's. A few lichens were recorded from the granite base of the 'Physical Energy' sculpture. Mark Powell had previously listed saxicolous lichens from the Serpentine bridge in 2018. In 2008, Wolseley, Purvis and Thüs recorded 14 species from various types of stone on the Albert Memorial but this has recently been thoroughly cleansed and no lichens were seen here.

In the list below, all records are from the Serpentine bridge area unless otherwise noted. Highlighted lichens were also recorded by Mark Powell in 2018.

Athallia holocarpa
Candelaria concolor
Candelariella vitellina f. *vitellina* *
Catillaria chalybeia var. *chalybeia*
Catillaria lenticularis
Circinaria contorta
Flavoplaca austrocitrina
Flavoplaca flavocitrina
Hyperphyscia adglutinata
Lecanora campestris ssp. *campestris*
Lecidea grisella
Mark Powell recorded *Lecidea fuscoatra*
s. lat. in 2018, probably the same lichen.
Lecidella scabra

* Also found on the 'Physical Energy' sculpture.

A total of 26 saxicolous species was recorded of which the following had not been previously recorded: *Candelaria concolor* (usually corticolous), *Catillaria lenticularis*, *Circinaria contorta*, *Physcia adscendens*, *Rusavskia elegans* and *Scoliciosporum umbrinum*.

In 2018 Mark Powell had recorded 31 saxicolous lichens from the same area, including 14 not found by us: *Candelariella aurella*, *Lecania rabenhorstii*, *Lecanora polytropa*, *Lecidella carpathica*, *Myriolecis albescens*, *Porpidia soredizodes*, *Trapelia glebulenta*, *T. obtegens*, *T.*

placodioides, *Verrucaria muralis* and *V. ochrostroma*.

Looking at the lists, it would seem likely that the current lichen flora of this area, both corticolous and saxicolous, is probably a combination of the records made during this visit and those made by Mark Powell seven years previously. The lists complement each other and the differences are likely to be the result of slightly different areas being examined and that we were recording presence rather than frequency of species in the park. However if we consider variation in common species neither *Flavoparmelia caperata* or *Evernia prunastri* was recorded by Mark in 2018 yet we recorded these species on 3 to 4 different tree species in the park suggesting that once arrived these species, which reproduce by soredia, can spread rapidly. For those of us familiar with nitrogen tolerant species the absence of a common species, *Ramalina farinacea*, was a surprise while fertile *R. fastigiata* was recorded once by us and also in 2018. Can we imagine a time when *Xanthoria parietina*, the classic indicator of nitrogen tolerance, was absent in London? Yet in 1988 Hawksworth and McManus only recorded it on fewer than 5 trees in Hyde Park while today we have found it on all substrates in all monads! Another species that was recorded by us and by Mark in 2018 was *Flavoparmelia soredians* – a species that was first recorded in London in Regents Park and is becoming common in areas associated with climate warming. Although we spent only a few hours on a cold winter's day recording lichen presence in a limited area of Hyde Park and Kensington Gardens it is clear that there are ongoing changes in the lichen flora which warrant a more systematic approach to lichen recording in our urban parks.

Acknowledgements are due to the Royal Parks for permission to record lichens. David Hawksworth is thanked for providing results from the 1979 and 1988 study. Participants who made records and submitted them to me are gratefully acknowledged too. All records, with their details, have been submitted to the BLS database.

References

Hawksworth, D.L. and McManus, P.M. (1989). Lichen recolonization in London under conditions of rapidly falling sulphur dioxide levels and the concept of zone skipping. *Bot. J. Linnaean Soc.* 100; 99 – 109.
Rose, C.I. and Hawksworth, D.L. (1981) Lichen recolonisation in London's cleaner air. *Nature* 289; 289-292.

J.F. Skinner
johnskinner082@gmail.com

Pat Wolseley
p.wolseley@nhm.ac.uk

BLS summer meeting 2024, Catalonia, in conjunction with the BrioLi group of the Institutó Catalana d'Història Natural (ICHN)

The meeting aimed to show the lichen flora of Catalonia to an international group which included BLS members from the UK, France, Germany and the United States. The meeting was led by Dr. Antonio Gómez-Bolea, from the University of Barcelona, María José Chesa environment officer with Barcelona [regional/town??? council] with a specialism in lichens, and Graham Boswell, the BLS Field Meetings Secretary

We were based in the Paratge Natural d'Interès Nacional of Poblet - PNIN Poblet (equivalent of a National Nature Reserve). We stayed in l'Espluga del Francolí at the Hostal del Senglar, a fantastic base for excursions, starting early with breakfast at the café-bakery Cal Tullet across the square and usually dining at the Bar del Casal adjacent to the hotel at the end of the day, both places providing Catalan specialities and a very warm welcome.

Each morning a different lichen habitat of the Mediterranean environment was explored. Afternoon temperatures occasionally exceeded 40 degrees centigrade but we were able to stay indoors sometimes using the lab set up in the conference room of our hotel which was also available in the evenings.

28th July 2024: María set out the program for an intense week of excursions and discoveries. Goodies were distributed

including an essential piece of equipment for this meeting, a sunhat provided with the support of the ICHN, a notebook celebrating its 125th anniversary and other gifts from the PNIN Poblet and other bodies.

29th July 2024: Barranc de Castellfollit following the Fungus Trail. The object of this first excursion was the

observation of lichens on siliceous rocks (granite and schist), epiphytic lichens on holm oak, holly and Scots pine, and terrestrial lichens.

In the afternoon we visited the monastery of Poblet with its royal tombs where one of the monks, Fra Xavier, a biologist and an old friend of Antonio, received us with great kindness and gave us a guided tour.

30th July 2024: Lichens of the limestone of the Barranc de la Pena and holm oak forest. The Director of the PNIN of Poblet, Ester Trullols, accompanied the group, with colleagues, Ricard Collado and Eloi Josa. They showed us the higher plant communities present and described the conservation measures undertaken.

31st July 2024: Sentiu de Sió, Serra de Bellmunt Almenara. Lichens on gypsum. This excursion was prepared in collaboration with the botany section of the Institute of Ilerdencs Studies, with thanks to Antoni Mayoral, and the whole team, especially Joan Pedrol and Albert Tarragó. At this site, two species of terrestrial lichens included in the catalogue of endangered flora of Catalonia were observed, the endangered fruticose species, *Seirophora lacunosa* and the crustose *Acarospora nodulosa*, categorised as vulnerable. Other species observed included *Acarospora placodiiformis*, *Psora saviczii*, *Psora vallesiaca* and *Gyalolechia desertorum*.

We then headed to the Mas de Melons Nature Reserve where we were welcomed by Adrià Urrea, of the LIFE Connect Ricotí Project, who showed us a part of the reserve

where the open landscape is being restored with scrub removal and planting and reseeding with native plants.

Then to the renowned Antoni Rúbies restaurant in Artesa de Lleida, where we enjoyed Catalan gastronomy with salads, esqueixada, snails a la Gormanta and rice dishes, which the whole group fell in love with. [Honestly, well maybe not everyone had the snails! says Juliet.]


The day ended in our workroom at the Hostal del Senglar, where the biologist and illustrator of the BrioLi group, Mercè Cartanyà, gave a talk about the geology of Catalonia and the flora of the Montserrat massif.

1st August 2024; La Molina, Tossa d'Alp ski station. Terrestrial and saxicolous lichens of the pre-Pyrenees. The species highlighted here were *Xanthaptychia contortuplicata*, a saxicolous lichen in the catalogue of endangered flora of Catalonia, and *Vulpicida juniperinus* on soil and tree trunks.

2nd August 2024; Montserrat, lichens on the conglomerates. Astonishing scenery with wonderful views from the cable car and funicular that took us to the top of the Montserrat mountain, 1000m above sea level. From here we followed the path to the Sant Jeroni viewpoint, observing the lichens on the conglomerates. We were accompanied on this day by Enric Alonso, member of BrioLi.

3rd August 2024; Prades. Saxicolous lichens on the sandstones of the Buntsandstein, terricolous lichens and epiphytic lichens on holm and Pyrenean oak. This excursion had as a special feature the exTRICATE project "Building Iberian conservation networks and the global Red List assessment of the regionally vulnerable lichen *Lethariella intricata*", a project funded by IUCN to expand the knowledge of this threatened species. The localities of *Lethariella intricata* that have been found to date in Catalonia are all located in the Prades Mountains.

These were a few days with an intense program, to achieve the maximum enjoyment of the landscape, the rocks, the soils, the vegetation, and all the lichens that crown them; a few days to share and learn from the nature that surrounds us, that observed through a hand lens acquires the shapes, colours and textures of lichens; an opportunity for introspection, to emulate the strategy of symbiosis and collaboration and help to be better people – in fact, “we are all lichens”.

Maria José Chesa
mjchesa@agronoms.cat

Day 1: Castelfollit and Poblet – 29th July 2024. Mediterranean lichens of siliceous rock and epiphytes on oak, pine and sweet chestnut.

At 7.30am, after breakfast in the local bakery, we set off on a short drive into the hills behind the Poblet monastery. This must have been planned as a gentle introduction to Catalan lichens, but that hadn't factored in a temperature of over 40 degrees from mid-morning onwards.

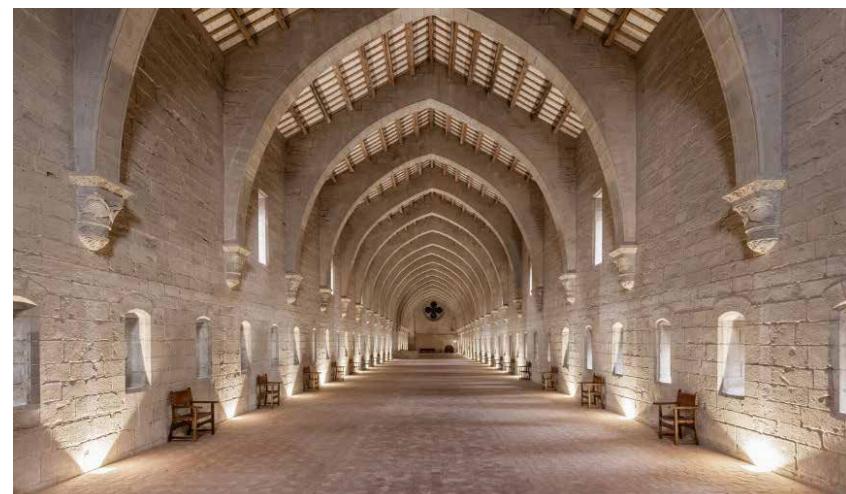
Fortunately, most of the time we were in dry evergreen oak woodland (*Quercus ilex*), gently climbing a well-used path and stopping regularly to look at trunks and fallen material. Amazing! for a Brit anyway. *Teloschistes chrysophthalmus* (Golden Eye Lichen) was on every twig, trunks were slathered with *Anaptychia ciliaris*. *Phlyctis agelaea* with its fruits looking like soralia was frequent, giving the same K+ yellow=>red norstictic acid reaction as *Phlyctis argena*. *Peltigeras* on the forest floor included *Peltigera neckeri*. There were plenty of slightly more familiar things too such as *Diploschistes scruposus* on the rocks and *Pleurosticta acetabulum* and *Parmelina tiliacea* on the trees.

Eloi Josa of the Poblet's Paratge Natural d'Interès Nacional (equivalent of a National Nature Reserve) was with us and explained the vegetation as we went up the hill, where evergreen oak of the lower slopes is gradually replaced by scots pine and holly.

We joined a forestry workers' track, coming out into the sun where there were good exposures of schist on the bordering cliff

Juliet Bailey admiring the local tree art
Photo © Wilkinson

and here were able to take in species such as *Pertusaria rupicola*, *Xanthoparmelia pulla* and *Pertusaria pseudocorallina*. There were also more regular friends such as *Ochrolechia parella*. Particularly enjoyable and strange to most of us were the little brown dishes of *Peltula euploca*, dotted on the rocks.


At this point it became obvious that we were flagging and getting hungry. So the planned route was curtailed and we started back down, taking time to admire the lichens and flora along the way. There were art works on occasional groups of trees, designed to engage the interest of the general public especially children, with trunks painted with huge representations of fungi which you could see only from a certain point of alignment.

Maria managed to refind a thallus of *Lobaria pulmonaria*, discovered by Eloi the previous year, confirming it as the most southerly location in Catalunya. Excitement all round! This isn't really *Lobaria* country, and where it exists it is poor material, low on the trunks, where conditions are most damp.

We took a picnic lunch in the shade by the cars, at which point Patrick disappeared off hunting for aquatic lichens for Holger Thús back in Germany. At this time of year, water is short in these hills with the beds of the torrents dry, but he collected some samples which will add to our knowledge of the aquatic flora of such places. Having done the BLS advanced Graphidaceae course with Gothamie Weerakoon just a couple of weeks previously, Juliet Bailey was hoping to collect specimens, particularly of *Graphis scripta* s. lat, aiming to tease out the distribution of the various species within this group. No *Graphis* had been seen while further up the hill, but Patrick successfully located some on hazel near the stream bed.

For almost the whole of the six days in the field we were in heavily protected sites where collecting needed a licence. Fortunately Antonio had the authority to allow limited collection for scientific purposes.

The afternoon was a cultural excursion to the Abbey of Poblet, a World Heritage Site, built in the early 15th century and occupied until 1835 when there was a period of

Poblet Abbey
Photo ©
Wilkinson

unrest and destruction of religious establishments across Spain. Following a century of disuse and vandalism, restoration began in about 1940, with the return of Cistercian monks, now numbering a mere 20 rather than the 300 of its heyday. Antonio's old friend, Xavier Guanter, is a monk and chief librarian in the community and we were able to join him for a very privileged tour of the building with his personal insights. Poblet was not only an abbey but also a royal hunting lodge and the church has an extraordinary collection of alabaster tombs of kings and princes.

Qiling Xu
Qxu957@gmail.com

Day 4: Tossa d'Alp – 1st August 2024

We had our usual breakfast at Torn De Pan Cafeteria at 7:00 and set off at 7:40. A convoy of four cars went on quiet country lanes towards the cable car station at La Molina, a journey of nearly three hours. We passed neat, terraced wheat fields which have been harvested, and vineyards, olive groves, orchards and almond trees as well as rustic villages perched on hills. Fire engines and fire crews were on standby as they were in high alert of forest fire due to the heat wave. There was an enticing view of the north face of the jagged mountain of Monserrat, our destination for tomorrow.

We passed a grey mountain of mining waste from potash extraction near Salient, which poses a danger of contaminating the water system. Mountains with limestone walls rising a hundred metres or so were green with mixed woods dominated by pines. After a long tunnel we came to the Cerdanya valley where the pre-Pyrenees begins. A windy road led us to the cable car station at La Monila at 1600 metres. It was impressive to see a few cyclists going up the steep climb. La Molina is a ski resort with many hotels and restaurants. At 11:15 we arrived at the top station – Tossa d'Alp (>2,500 metres) – and ready to explore.

The area is comprised of Devonian limestone, and we climbed to the peaks to examine lichens and vegetations on the rocks and soil. There was so much to see. Maria and Antonio showed us various subalpine specialist lichens including *Cetraria juniperina*, *Solorina bispora*, *Seirophora contortuplicata*, *Cetraria islandica* and *Farnoldia jurana*. There were some low-lying beautiful alpine plants such as thyme, snow star, snow cinquefoil, fragile fern, euphorbia (cypress spurge). We had a picnic on the slope surrounded by the spectacular mountain scenery. We then spent some time at the interchange station to look for epiphytic lichens before heading down to the base station of La Molina. We had a brief coffee break and then spent half an hour in the pine woods where a rich community of foliose lichens was found. On the way back we had a brief stop at a petrol station which turned out to be a snail heaven, snails congregated everywhere, small and large. Tim selected a handful of empty snail shells for his collection. He pointed to the ones that cling onto branches, pots and walls explaining that they are in a form of suspended animation to survive drought.

At supper we gathered in the dining room with drinks, bread, salad and left-over rice from the previous lunch. We played a game suggested by Tim, “If you were a

Vulpicida juniperinus (Cetraria juniperina) Photo © D. Wilkinson

lichen what lichen would you be?" Below are the answers from the team.

1. Tim: The vagrant lichen: *Aspicilia fruticulosa* (but today it has another name)
2. Patrick: *Teloschistes chrysophthalmus* - sunlike apothecia = being happy
3. Graham: *Catolechia wahlenbergii* – Goblin Lights
4. Barbara: *Nephroma laevigatum* Ach., 1814 – (a bit upside-down:)
5. Juliet: *Phaeographis smithii*
6. Paul: *Xanthoria parietina*
7. Antonio: *Evernia prunastri*
8. Maria: *Lethariella intricata*
9. Sean: *Porpidia subsimplex*, an endolithic North American lichen.
10. Qiling: Map lichen, *Rhizocarpon geographicum*
11. Judith: *Solorina bispora* (or actually *Solorina spongiosa* which is very similar and grows in England and I am still looking for it near where I live).
12. Jenny: *Solorina crocea* (found in the mountains of Scotland)
13. Merce: *Cetraria juniperina*

Juliet Bailey
jabailey99@gmail.com

British Lichen Society Field Meetings & Workshops 2025/26

Field Meeting Secretary

Graham Boswell: Base Lodge 16 The Parks, Minehead TA24 8BS
Email togooutdoors@hotmail.com

Note: Most meetings and workshops are open to all members and prospective members, regardless of level of experience. All that is required is enthusiasm about lichens. Occasionally a meeting is targeted to a particular, more specialised group but that will be made clear in the information provided for the event.

Grants towards the cost of field meeting can be applied for from the BLS.

After attending a field meeting please complete the feedback form on the BLS website.

BLS Summer Meeting 2025 – Isle of Man

Local Leader David Bellamy, Manx Wildlife Trust

Monday 14th – Friday 18th July

Lichens are one of the most under-recorded groups on the Island hence the need for another meeting; the last meeting was held in 2010. Weather permitting, a visit to the Calf of Man will be arranged.

Meeting Base & Accommodation

The meeting is hosted by the Manx Wildlife Trust who is providing full board accommodation at King William College, Castletown. Accommodation comprises single and twin rooms along with breakfast, a packed lunch and evening meals. A large microscope room and meeting room is available for use.

Transport

Manx Wildlife Trust is providing a 16 seater mini bus and an additional vehicle for 4 passengers. The trust will also provide ferry travel for foot passengers and one vehicle to transport BLS and other microscopes.

Cost

The £50 deposit is likely to cover the total cost of the field meeting.

Booking

Book with field meeting secretary. Once you have a confirmed a place, please pay the deposit of £50 direct to the British Lichen Society (not the BLS) at CAF Bank Sort code 40-52-40 A/C No. 00012363.

Maps

The OS map 95 covers the whole Island

Provisional Programme

A large number of sites are under consideration including woodland, coastal, upland

and historic buildings and mine sites. There is a variety of substrates within the above habitat types.

**BLS Autumn Meeting 2025. Hebden Bridge, West Yorkshire
Local Organiser, Rowan Atkinson, Ffion Atkinson & Ann Claypole**

6th –10th October

There has not been a BLS meeting in this area since 1972. Let's see how things have changed.

Meeting Base

The meeting base is Hebden Bridge Hostel, Highfield Hebden Bridge HX7 8DG.

Accommodation and Cost

Accommodation for 20 to 25 people is available in single and twin rooms, some of the twin rooms are well designed to enable privacy to occupants. BLS have sole use and we are self-catering.

Because this is a sole use booking, the cost depends on the number of participants. I have based the cost on 20 participants which works out to £160 each for the week; if the number is less than 20 the cost will be more, if numbers are higher than 20 the cost will be less.

Booking

Attendees should book their place with the field meeting secretary, Graham Boswell, email togooutdoors@hotmail.com or by post to Base Lodge 16 The Parks, Minehead TA24 8BS. And pay a deposit of £50 to the BLS Bank Account, CAF Bank sort code 40-52-40 Account No. 00012363, reference Hebden Bridge.

Microscope Work

A room has been reserved at the nearby Hebden Bridge Town Hall for the duration of the meeting for microscope work and presentations. The BLS microscopes will be available for communal use.

Winter Workshop 2026 – Preston Montford, Shropshire

Workshop facilitators Brian Coppins, Neil Sanderson & John Douglass

Friday 20th – Monday 23rd February with an optional field meeting on Friday.

The 'bring your problems' workshop has been a feature of the BLS meetings programme for many years and we are continuing this successful theme.

The meeting also features a field visit.

Meeting Base

The meeting is residential at Preston Montford Field Studies Council centre near Shrewsbury SY4 1DX www.field-studies-council.org/presmontford. Tel. 01743852040.

Accommodation and cost

Accommodation for 20+ people has been reserved in single/twin rooms and a deposit paid by the BLS.

Full board accommodation including dinner, breakfast and packed lunch for 3 nights is £324.00 for single occupancy rooms and £246.00 for twin (shared) rooms. The price includes the cost of meeting and microscope rooms.

Attendees wishing to stay on Thursday night must book and pay for their own accommodation. The cost of a single room for Thursday night is £42.00 and £35.00 for a twin (shared) room.

Booking

Attendees should book their rooms with the field meetings secretary, Graham Boswell, email togooutdoors@hotmail.com or by post to Base Lodge 16 The Parks, Minehead TA24 8BS. And pay a deposit of £50 to the BLS Bank Account, CAF Bank sort code 40-52-40 Account No. 00012363, reference Winter workshop.

Microscope Work

Meeting rooms have been reserved for the duration of the meeting for microscope work and presentations. The BLS microscopes will be available for communal use.

Maps

OS Landranger 1:5000 103 & 104

BLS Spring Meeting – Eden Vale, Westmorland

Local Leader: Pete Martin

Date: April 2026

The BLS have never held a field meeting in this area. The area is diverse in substrate.
This Meeting is in the Planning Stage

British Isles list of lichens and lichenicolous fungi

April 2025 update to list.

The fully corrected list is available on the BLS web site, www.britishlichensoociety.org.uk

Please note that a copy of the current Taxon Dictionary can be obtained as a spreadsheet by clicking on the "csv" tab in the bottom left-hand corner of the Lichen Taxon Dictionary page: <http://www.britishlichensoociety.org.uk/resources/lichen-taxon-database>. It sometimes takes a minute or two to respond. To obtain a list of currently accepted names filter for "Y" in column D – "Is current name?".

Synonyms. In the downloaded csv file, the most encountered synonyms for a given species are provided in Column F – “Synonyms”. However, to obtain a full list of synonyms for a species, filter for its BLS number in Column G – “BLS Number”.

We are indebted to Paul Cannon, Paul Diederich, Vince Giavarini, David Mitchel, Di Napier, Jenny Seawright, Jan Vondrák, Rebecca Yahr and other checklist users, for bringing several of the required additions and changes to our notice. Anyone encountering difficulties or errors regarding nomenclature or BLS code numbers, please contact one of us, as below. E-mail contacts (with main responsibilities):

Brian Coppins (nomenclature, BLS and NBN species dictionaries, allocation of BLS numbers and abbreviations spelling, authorities, dates of publication) coppinsbrian@gmail.com

Janet Simkin (Recorder and spreadsheetspecies dictionaries) records@britishlichenociety.org.uk

Add:			Notes
2908	<i>Arrhenia cupulatoides</i> #	Arrh cupu #	10
2909	<i>Arrhenia mohniensis</i> #	Arrh mohn #	10
2892	<i>Arthopyrenia spilobola</i>	Arthop spilo	1
2914	<i>Caloplaca sterilis</i>	Calo ster	
2917	<i>Chaenothecopsis australis</i> #	Chaenothecop aust #	
2916	<i>Chaenothecopsis tasmanica</i> ##	Chaenothecop tasm ##	
2912	<i>Chaenotricha cilians</i>	Chaenotr cili	
2904	<i>Cladonia teuvoana</i>	Clad teuv	
2905	<i>Ellisembia lichenicola</i> #	Elli lich #	
2891	<i>Lichenodiplis lecanoricola</i> #	Lichenodip lecanoric #	
2906	<i>Lichenostella griseofusca</i> #	Lichenstell gris #	9
2900	<i>Loxospora chloropolia</i>	Loxo chlo	
2901	<i>Loxospora elatina</i> s. str.	Loxo elat s.s.	7
2898	<i>Paraepicoccum hypotrichynae</i> #	Paraep hypo #	12
2899	<i>Pseudocercospora normandinae</i> #	Pseudocer norm #	
2897	<i>Pseudophaeoisaria cladoniae</i> #	Pseudoph clad #	
2895	<i>Rufoplaca subpallida</i>	Rufo subp	5
2913	<i>Spirographa skorinae</i> #	Spirog skor #	
2890	<i>Spirographa vermiformis</i> #	Spirog verm #	2
2915	<i>Stereocaulon cephalocrustatum</i>	Ster ceph	
2910	<i>Stereocaulon urceolatum</i>	Ster urce	
2907	<i>Taeniolella lecanoricola</i> #	Taeniolel leca #	
2911	<i>Thelocarpon actonii</i>	Thelocar acto	
2918	<i>Tremella nimisiae</i> #	Tremel nimi #	

2919	<i>Tremella pusillae</i> #	Tremel pusi #	
2903	<i>Trimmatostroma vandenboomii</i> #	Trimmatost vand #	
2894	<i>Xanthomendoza oregana</i>	Xanthom oreg	3
2902	<i>Xylohypopsis xanthoriicola</i> #	Xylohy xant #	

Change of genus (sometimes also species epithet or status):						
Change from:			Replace with:			Notes
2374	<i>Acremonium lichenicola</i>	Acrem lich #	2374	<i>Cylindromonium lichenicola</i> #	Cylind lich #	
91	<i>Arthopyrenia socialis</i> ##	Arthop soci ##	2276	<i>Zwackhiomyces socialis</i> #	Zwackhiomy soci #	8
1828	<i>Bacidia igniarii</i>	Bacidia igni	1828	<i>Scutula igniarii</i>	Scut igni	
2503	<i>Caloplaca alboluteascens</i>	Calo albo	2503	<i>Kuettlingeria alboluteascens</i>	Kuet albo	
0233	<i>Caloplaca alociza</i>	Calo aloc	0233	<i>Pyrenodesmia alociza</i>	Pyrenod aloc	
1591	<i>Caloplaca approximata</i>	Calo appr	1591	<i>Amundsenia approximata</i>	Amun appr	
0234	<i>Caloplaca aractina</i>	Calo arac	0234	<i>Sanguineodiscus aractinus</i>	Sang arac	
2442	<i>Caloplaca arcis</i>	Calo arcis	2442	<i>Flavoplaca arcis</i>	Flavopl arcis	
0235	<i>Caloplaca arenaria</i>	Calo aren	0235	<i>Rufoplaca arenaria</i>	Rufo aren	
0236	<i>Caloplaca arnoldii</i> subsp. <i>oblitterata</i>	Calo arnol	0236	<i>Calogaya oblitterata</i>	Calog oblit	
2371	<i>Caloplaca asserigena</i>	Calo asse	2371	<i>Marchantiana asserigena</i>	Marchant asse	
0237	<i>Caloplaca atroflava</i>	Calo atro	0237	<i>Kuettlingeria atroflava</i>	Kuet atro	
0239	<i>Caloplaca aurantia</i>	Calo aurantia	0239	<i>Variospora aurantia</i>	Varios aura	
2613	<i>Caloplaca austrocitrina</i>	Calo aust	2613	<i>Flavoplaca austrocitrina</i>	Flavopl aust	
1689	<i>Caloplaca britannica</i>	Calo brit	1689	<i>Haloplaca britannica</i>	Halop brit	
2609	<i>Caloplaca calcitrapa</i>	Calo calc	2609	<i>Flavoplaca calcitrapa</i>	Flavopl calc	
1644	<i>Caloplaca ceracea</i>	Calo ceracea	1644	<i>Kuettlingeria ceracea</i>	Kuet cera	
0242	<i>Caloplaca cerinella</i>	Calo cerinella	0242	<i>Athallia cerinella</i>	Athal cerinella	

0279	Caloplaca cerinelloides	Calo cerinelloides	0279	Athallia cerinelloides	Athal cerinelloides	
0243	Caloplaca chalybaea	Calo chal	0243	Pyrenodesmia chalybaea	Pyrenod chal	
0825	Caloplaca chrysodeta	Calo chry	0825	Leproplaca chrysodeta	Lepropl chry	
0245	Caloplaca chrysophthalma	Calo chrysoph	0245	Solitaria chrysophthalma	Solit chry	
1746	Caloplaca cinnamomea	Calo cinna	1746	Blastenia ammiospila	Blas ammi	
0246	Caloplaca cirrochroa	Calo cirr	0246	Leproplaca cirrochroa	Lepropl cirr	
	Caloplaca citrina s. lat.	Calo citr s.l.		Flavoplaca citr s.l.	Flavopl citr s.l.	
2351	Caloplaca citrina s. str.	Calo citr s.s.	2351	Flavoplaca citrina s. str.	Flavopl citr s.s.	
0249	Caloplaca crenulatella	Calo crenulatella	0249	Xanthocarpia crenulatella	Xanthoc cren	
0285	Caloplaca dalmatica	Calo dalm	285	Flavoplaca itiana	Flavopl itia	
250	Caloplaca decipiens	Calo deci	250	Calogaya decipiens	Calog deci	
2593	Caloplaca demissa	Calo demissa	2593	Olegblumea demissa	Oleg demi	
2443	Caloplaca dichroa	Calo dich	2443	Flavoplaca dichroa	Flavopl dich	
2592	Caloplaca diffusa	Calo diff	2592	Xanthocarpia diffusa	Xanthoc diff	
0259	Caloplaca flavescens	Calo flaves	0259	Variospora flavescens	Varios flav	
2315	Caloplaca flavocitrina	Calo flavocit	2315	Flavoplaca flavocitrina	Flavopl flav	
0254	Caloplaca flavorubescens	Calo flavoru	0254	Gyalolechia flavorubescens	Gyalol flavoru	
0255	Caloplaca flavovirescens	Calo flavovi	0255	Gyalolechia flavovirescens	Gyalol flavovi	
0257	Caloplaca granulosa	Calo gran	0257	Flavoplaca granulosa	Flavopl gran	
0258	Caloplaca haematites	Calo haem	0258	Sanguineodiscus haematites	Sang haem	
0261	Caloplaca holocarpa s. lat.	Calo holo s.l.	0261	Athallia holocarpa s. lat.	Athal holo s.l.	
2527	Caloplaca holocarpa s. str.	Calo holo s.s.	2527	Athallia holocarpa s. str.	Athal holo s.s.	

0262	Caloplaca irrubescens	Calo irru	0262	Squamulea subsoluta	Squamul subs	
2607	Caloplaca limonia	Calo limo	2607	Flavoplaca limonia	Flavopl limo	
0266	Caloplaca luteoalba	Calo lute	0266	Cerothallia luteoalba	Cero lut	
0267	Caloplaca marina	Calo marina	0267	Flavoplaca marina	Flavopl marina	
0280	Caloplaca maritima	Calo maritima	0280	Flavoplaca maritima	Flavopl maritima	
0264	Caloplaca marmorata	Calo marm	0264	Xanthocarpia fulva	Xanthoc fulv	
0268	Caloplaca microthallina	Calo micr	0268	Flavoplaca microthallina	Flavopl micr	
2595	Caloplaca neotaurica	Calo neot	2595	Kuettlingeria neotaurica	Kuet neot	
2461	Caloplaca oasis	Calo oasi	2461	Flavoplaca oasis	Flavopl oasis	
0272	Caloplaca ochracea	Calo ochr	0272	Xanthocarpia ochracea	Xanthoc ochr	
2317	Caloplaca phlogina	Calo phlo	2317	Scythoria phlogina	Scyt phlo	
274	Caloplaca pollinii	Calo poll	274	Huneckia pollinii	Hune poll	
2528	Caloplaca pyracea	Calo pyra	2528	Athallia pyracea	Athal pyra	
0275	Caloplaca ruderum	Calo rude	0275	Flavoplaca ruderum	Flavopl rude	
0277	Caloplaca saxicola	Calo saxi	0277	Calogaya pusilla	Calog pusi	
0278	Caloplaca scopularis	Calo scop	0278	Athallia scopularis	Athal scop	
2707	Caloplaca sol	Calo sol	2707	Flavoplaca sol	Flavopl sol	
2460	Caloplaca soralifera	Calo soral	2460	Kuettlingeria soralifera	Kuet sora	
2459	Caloplaca sorediella	Calo sored	2459	Haloplaca sorediella	Halopl sored	
2321	Caloplaca suaedae	Calo suae	2321	Haloplaca suaedae	Halo suae	
0281	Caloplaca teicholyta	Calo teic	0281	Kuettlingeria teicholyta	Kuet teic	
0282	Caloplaca thallincola	Calo thal	0282	Variospora thallincola	Varios thal	
0283	Caloplaca ulcerosa	Calo ulce	0283	Coppinsiella ulcerosa	Coppinsiel ulce	
0284	Caloplaca variabilis	Calo vari	0284	Pyrenodesmia variabilis	Pyrenod vari	

0286	Caloplaca verruculifera	Calo verr	0286	Polycauliona verruculifera	Polycaul verr	
2532	Caloplaca vitellinula	Calo vitel	2532	Athallia vitellinula	Athal vitel	
0826	Caloplaca xantholyta	Calo xant	0826	Leproplaca xantholyta	Lepropl xant	
470	Chaenotheca brachypoda	Chaenotheca brac	470	Coniocybe brachypoda	Coniocy brac	
466	Chaenotheca furfuracea	Chaenotheca furf	466	Coniocybe furfuracea	Coniocy furf	
1839	Cryptothelae rhodosticta	Cryptoth rhod	1839	Phylliscum rhodostictum	Phyllis rhod	
0512	Fulgensia bracteata var. alpina	Fulg brac	0512	Gyalolechia bracteata	Gyalol brac	
0513	Fulgensia fulgens	Fulg fulg	0513	Gyalolechia fulgens	Gyalol fulg	
2288	Fusarium peltigerae #	Fusar pelt #	2288	Scolecofusarium ciliatum #	Scolecof cili #	
0573	Ionaspis lacustris	Iona lacu	0573	Hymenelia lacustris	Hymenelia lacu	
1987	Ionaspis obtecta	Iona obte	1987	Hymenelia obtecta	Hymenelia obte	
0589	Ionaspis odora	Iona odo	0589	Hymenelia odora	Hymenelia odor	
0590	Ionaspis suaveolens	Iona suav	0590	Hymenelia suaveolens	Hymenelia suav	
810	Lempholemma botryosum	Lemph botr	810	Synalissina botryosa	Synalissin botr	
814	Lempholemma cladodes	Lemph clad	814	Synalissina cladodes	Synalissin clad	
815	Lempholemma intricatum	Lemp intr	815	Synalissina intricata	Synalissin intr	
2739	Loxospora cristinae	Loxo cris	2739	Chicitaea cristinae	Chic cris	
2117	Muellerella polyspora #	Muell poly #	2117	Muellerella haplotella #	Muell hapl #	
1208	Psorotichia schaereri	Psorot scha	1208	Collemopsis schaereri	Collemopsis scha	
1796	Pterygiopsis concordatula	Pter conc	1796	Forssellia concordatula	Fors conc	
1797	Pterygiopsis lacustris	Pter lacu	1797	Thelignya lacustris	Thelig lacu	
1674	Pyrenopsis grumulifera	Pyrenopsis grum	1674	Allopyrenis grumulifera	Allop grum	

1798	Pyrenopsis impolita	Pyrenopsis impo	1798	Allopyrenis impolia	Allop impo	
2485	Refractohilum achromaticum #	Refr achr #	2485	Gyalectiphila achromatica #	Gyalectiph achr #	
2861	Refractohilum peltigerae	Refr pelt #	2069	Hawksworthiana peltigerae #	Hawksw pelt #	6
2183	Refractohilum pluriseptatum #	Refr plur #	2183	Gyalectiphila pluriseptata #	Gyalectiph plur #	
1727	Rinodina orculariopsis	Rino orcu	1727	Rinodina sicula	Rino sicu	
1822	Vestergrenopsis elaeina	Vest elae	1822	Tingiopsis elaeinum	Ting elae	
1527	Xanthoria candelaria s. lat.	Xanthoria cand s.l.	1527	Polycauliona candelaria s. lat	Polycaul cand s.l.	
2364	Xanthoria candelaria s. str.	Xanthoria cand s.s.	2364	Polycauliona candelaria s. str.	Polycaul cand s.s.	
1528	Xanthoria elegans	Xanthoria eleg	1528	Rusavskia elegans	Rusa eleg	
1918	Xanthoria fulva	Xanthoria fulva	1918	Xanthomendoza fulva	Xanthom fulva	
1531	Xanthoria polycarpa	Xanthoria poly	1531	Polycauliona polycarpa	Polycaul poly	
0950	Xanthoria ucrainica	Xanthoria ucra	0950	Polycauliona ucrainica	Polycaul ucra	
1909	Xanthoria ulophyllodes	Xanthoria ulop	1909	Xanthomendoza ulophyllodes	Xanthom uloph	3

Change of specific epithet or spelling:

Change from:			Replace with:			Notes
2034	Clypeococcum hypocenomyces #	Clyp hypo #	2034	Clypeococcum hypocenomyces #	Clyp hypo #	
0536	Gyalecta flotowii	Gyale flot	0536	Gyalecta flotovii	Gyale flot	
2069	Hawksworthiana peltigericola #	Hawksw pelt #	2069	Hawksworthiana peltigerae #	Hawksw pelt #	
2276	Zwackhiomyces immersae #	Zwackhiomy imme #	2276	Zwackhiomyces socialis #	Zwackhiomy soci #	

Change of rank:						
Change from:		Replace with:			Notes	
913	<i>Arrhenia peltigerina</i> #	Arrh pelt #	913	<i>Arrhenia peltigerina</i> s. lat. #	Arrh pelt s.l. #	11
550	<i>Loxospora elatina</i>	Loxo elat	550	<i>Loxospora elatina</i> s. lat.	Loxo elat s.l.	7

Change of number and/or abbreviation:						
Change from:		Replace with:			Notes	
2096	<i>Lichenodiplis lecanorae</i> #	Lichenodip leca #	2096	<i>Lichenodiplis lecanorae</i> #	Lichenodip lecanorae #	

Removed from list of accepted taxa	
1244	<i>Caloplaca polycarpa</i>
2423	<i>Lichenodiplis fallaciosa</i> #
2762	<i>Tremella macrobasidiata</i> #

Notes

1 – re-instated in the Taxon Dictionary on the basis of its type being from Scotland. The species is of uncertain affinity and needs investigation.

2 – removed from the synonymy of *Spirographa fusispora*, records of which from *Lepra* spp. probably all belong here.

3 – most British records of *X. ulophyllodes* probably belong to *X. oregana*.

4 – *Caloplaca itiana* sensu Orange (2018) is considered to belong to *Flavoplaca calcitrata*. The BLS no. 2706 is deprecated.

5 – previously regarded as a synonym of *Rufoplaca arenaria*.

6 – the BLS number 2861 is now deprecated.

7 – made necessary by the presence of *Loxospora chloropolia*, which is best distinguished from *L. elatina* s. str. by sequence data.

8 – the BLS number 0091 is now deprecated.

9 – previous British reports of *Tremella macrobasidiata* belong here.

10 – previously included in *Arrhenia peltigerina*, which is a species confined to North America.

11 – changed in order to capture records of lichenicolous *Arrhenia* that have not been

critically assigned to either *A. cupulatoides* or *A. mohniensis*.

12 – published as *Paraëpicoccum hypotrichynae*.

B.J. Coppins & J. Simkin

Literature pertaining to British lichens – 76

Lichenologist 56(5) was published on 12 December 2024, 56(6) on 31 December 2025 and 57(1) on 25 February 2025.

Taxa prefixed by * are additions to the checklists of lichens and lichenicolous fungi for Britain and Ireland. Aside comments in square brackets are by the author of this compilation.

The parts of the series *Revisions of British and Irish Lichens* are freely available online from the BLS website: <https://www.britishlichensoociety.org.uk/content/lgb13>.

BRACKEL, W. von 2025. *Pronectria raetzeli*, a new lichenicolous fungus on *Peltigera* from Brandenburg (north eastern Germany). *Graphis Scripta* 37(1): 1–6. Includes a key to Hypocreales [*Nectriopsis*, *Paranectria*, *Pronectria*, *Xenonectriella*] hosted by *Peltigera* spp.

CANNON, P., ARUP, U., COPPINS, B., APTROOT, A., SANDERSON, N., SIMKIN, J. & YAHR, R. 2024. Teloschistales including *Brigantiae* (Brigantiaeaceae), *Megalospora* (Megalosporaceae) and *Amundsenia*, *Athallia*, *Blastenia*, *Calogaya*, *Caloplaca*, *Cerothallia*, *Coppiniella*, *Flavoplaca*, *Gyalolechia*, *Haloplaca*, *Huneckia*, *Kuettlingeria*, *Leproplaca*, *Marchantiana*, *Oleoglumea*, *Polycauliona*, *Pyrenodesmia*, *Rufoplaca*, *Rusavskia*, *Sanguineodiscus*, *Scythoria*, *Solitaria*, *Squamulea*, *Teloschistes*, *Variospora*, *Xanthocarpia*, *Xanthomendoza* and *Xanthoria* (Teloschistaceae). *Revisions of British and Irish Lichens* 43: 1–74. This revision reports the many changes in generic placements for species within the ‘super-genus’ *Caloplaca*. Most have been previously noted in these pages, but two new combinations are *Calogaya obliterata* (Pers.) P.F. Cannon & Coppins (syn. *Caloplaca arnoldii* subsp. *oblitterata*) and *Kuettlingeria ceracea* (J.R. Laundon) P.F. Cannon & Coppins (syn. *Caloplaca ceracea*). For other changes see the BLS Update in this *Bulletin*. British material previously named *Caloplaca arenaria* is considered to involve two species: *Rufoplaca arenaria* and **R. subpallida*. Similarly, material previously known as *Xanthoria ulophyllodes* includes

two species: **Xanthomendoza oregana* and *Xanthomendoza ulophyllodes*. [The author citation for *Kuettingeria teicholyta* is given as “(Ach.) I.V. Frolov, Vondrák & Arup 2020” but should be “(Ach.) Trevis. (1857)”.]

CANNON, P., COPPINS, B., APTROOT, A., FRYDAY, A. & SIMKIN, J. 2025. Miscellaneous Peltigerales, including *Spilonema* (Coccocarpiaceae), *Tingiopsisidium* (Koerberiaceae), *Massalongia* and *Polychidium* (Massalongiaceae), *Placynthium* (Placynthiaceae) and *Vahliella* (Vahliellaceae). *Revisions of British and Irish Lichens* 50: 1–16. The genus name *Vestergrenopsis* Gyeln. (1940) is a synonym of *Tingiopsisidium* Werner (1939) such that *Vestergrenopsis elaeina* becomes *Tingiopsisidium elaeinum* (Wahlenb.) Hafellner & T. Sprib. (2016).

CANNON, P., COPPINS, B., APTROOT, A., & SIMKIN, J. 2025. Collemopsidiales, including *Collemopsisidium*, *Didymellopsis*, *Frigidopyrenia*, *Zwackhiomacromyces* and *Zwackhiomyces* (Xanthopyreniaceae). *Revisions of British and Irish Lichens* 45: 1–14.

CANNON, P., COPPINS, B., FRYDAY, A. & SIMKIN, J. 2025. Miscellaneous Pertusariales, including *Agyrium* (Agyriaceae), *Coccotrema* (Coccotremataceae), *Dibaeis*, *Icmadophila*, *Siphula* and *Thamnolia* (Icmadophilaceae) and *Microcalicium* (Microcaliciaceae). *Revisions of British and Irish Lichens* 51: 1–11.

CANNON, P., COPPINS, B., SANDERSON, N. & SIMKIN, J. 2024 [2023]. Lichinales: Lichinaceae and Peltulaceae, including the genera *Cryptothelae*, *Ephebe*, *Euopsis*, *Lemmopsis*, *Lempholemma*, *Lichina*, *Metamelanea*, *Peltula*, *Phyllum*, *Porocyphus*, *Psorotrichia*, *Pterygiopsis*, *Pyrenocarpon*, *Pyrenopsis*, *Synalissa*, *Thermutis* and *Watsoniomyces*. *Revisions of British and Irish Lichens* 44: 1–26.

CANNON, P., COPPINS, B., & SIMKIN, J. 2025. Thelocarpales, including *Sarcosagium* and *Thelocarpon* (Thelocarpaceae). *Revisions of British and Irish Lichens* 48: 1–10. Includes description and illustrations of the new species **Thelocarpon actonii* P.F. Cannon & Coppins.

CANNON, P., FRYDAY, A., COPPINS, B., APTROOT, A., SANDERSON, N. & SIMKIN, J. 2025. Hymeniales, including *Hymenelia* and *Tremolecia* (Hymeneliaceae). *Revisions of British and Irish Lichens* 46: 1–8. *Ionaspis* is considered a synonym of *Hymenelia* with the new combination *Hymenelia suaveolens* (Fr.) P.F. Cannon & Fryday (syn. *Ionaspis suaveolens*).

DARMOSTUK, V., ETAYO, J., RODRIGUEZ-FLAKUS, P., KUKWS, M., PINO-BODAS, R., PÉREZ-ORTEGA, S. & FLAKUS, A. 2025. A novel, exclusively lichen-inhabiting lineage of hypocrealean fungi revealed in the Sordariomycetes. A treatment of *Paranectria* and related genera, including a key to species.

DIEDERICH, P., ERTZ, D & BRAUN, U. 2024. *Flora of Lichenicolous Fungi*. Vol. 2. *Hymomycetes*. National Museum of Natural History, Luxembourg. 544 pp. ISBN: 978-2-919877-27-0. A major collaborative, extensively illustrated, worldwide treatment of asexual lichenicolous fungi which produce conidia not within enclosed structures such as pycnidia. A total of 271 species and one variety are treated across 101 genera, together with a further 25 species that are facultatively or doubtfully lichenicolous. Four new genera are newly introduced as well as 53 new species. The 11 new combinations include *Gyalectiphila*

achromatica (B. Sutton) Cl. Roux & Diederich (syn. *Refractohilum achromaticum*), *G. pluriseptata* (Etayo & Cl. Roux) Cl. Roux & Diederich (syn. *Refractohilum pluriseptatum*) and *Hawksworthiana peltigerae* (Keissl.) Diederich (syn. *Hawksworthiana peltigericola* and *Refractohilum peltigerae*). Among the new genera is *Pseudophaeoisaria* Diederich & Giavarini, with the single species **P. cladoniae* Diederich & Giavarini from the New Forest. In the genus *Paraëpicoccum* Matsush. (1993), the new species **P. hypotrichynae* Diederich, Etayo & Giavarini is described from Spain, the New Forest and Dorset. In the genus *Pseudocercospora* Speg. (1910) is described the new species **P. normandinae* Diederich, from Austria and Scotland. Described originally from North America, **Cirrenalia lichenicola* Perez-Ort. (2020) is reported from Scotland, on *Mycoblastus caesioides*. [Since the publication of this volume in December, four of the treated species have been added to the GB&I list: *Lichenostella griseofusca* van der Kolk & Diederich (2025), *Taeniolella lecanoricola* Heuchert & Diederich (2018), *Trimmatostroma vandenboomii* Diederich (2024) and *Xylohypopsis xanthoriicola* Pinault & Diederich (2024) and several more additions are expected once this book has been put to further use!].

EVANKOW, A.M., YIN, A., ZULFIQAR, R., KHALID, A.N., WANG, L. & TIMDAL, E. 2025. *Psora mediterranea* (Lecanorales, Psoraceae), a new lichen species from Europe, including a new concept for *P. himalayana* and a revised key to the European species. *Mycological Progress* 24(26): 1–21. Includes a key to *Psora* and similar taxa in Europe. *Protomicarea* is considered to belong to the *Pilocarpaceae* rather than the *Psoraceae*.

JØRGENSEN, P.M. & JAHNS, H.M. 1987. *Muhria*, a remarkable new lichen genus from Scandinavia. *Notes RBG Edinb.* 44: 581–599. The original description and illustrations of *Stereocaulon urceolatum* (as *Muhria urceolata*), recently identified from Scotland.

KONDRATYUK, A.Y., LÓKÖS, L., KONDRATIUK, A.S., KÄRNEFELT, I., THELL, A., FARKAS, E. & HUR, J.-S. 2022. Contributions to molecular phylogeny of lichens 3. New monophyletic branches of the *Trapeliaceae* and *Xylariaceae*. *Acta Botanica Hungarica* 64(1–2): 97–135. A phylogenetic analysis of some taxa in the *Trapeliaceae* and the *Xylographaceae* resulted in the recognition of some new genera and many new combinations. Those taxa known from GB&I are as follows: *Brianiopsis* S.Y. Kondr. with *B. globulosa* (Coppins) S.Y. Kondr. (syn. *Lambiella globulosa*), *B. gyritzans* (Nyl.) S.Y. Kondr. (syn. *Lambiella gyritzans*), *B. mullensis* (Stirt.) S.Y. Kondr. (syn. *Lambiella mullensis*); *Farkasiella* S.Y. Kondr. & L. Lókös with *F. aeneofusca* (Flörke ex Flot.) S.Y. Kondr. & L. Lókös (syn. *Trapeliopsis aeneofusca*), *F. gelatinosa* (Flörke) S.Y. Kondr. & L. Lókös; *Gallowayiopsis* S.Y. Kondr. with *G. collaris* (Orange) S.Y. Kondr. (syn. *Trapelia collaris*), *G. glebulosa* (Sm.) S.Y. Kondr. (syn. *Trapelia glebulosa*), *G. obtegens* (Th. Fr.) S.Y. Kondr. (syn. *Trapelia obtegens*); *Kleopowiella* S.Y. Kondr. with *K. placodioides* (syn. *Trapelia placodioides*); *Trapejamesia* S.Y. Kondr. with *T. corticola* (Coppins & P. James) S.Y. Kondr. (syn. *Trapelia corticola*). *Lambiella sphacelata* is provisionally assigned to the genus *Ainoa* but a valid new combination was not made. [References in the title and in the text to “*Xylariaceae*” are errors for “*Xylographaceae*”. The new combinations given above seem to be the result of too narrow a genus concept and they are not adopted as accepted names in the BLS Taxon Dictionary for the time being, at least. The changes

are either unnecessary as the “traditional” genera are monophyletic according to their phylogenetic tree or are not supported by acceptable bootstrap values.].

MANAWASINGHE, I.S., HYDE, K.D., WANASINGHE, D.N., KARUNARATHNA, S.C., MAHARACHCHIKUMBURA, S.S.N., SAMARAKOON, M.C. *et al.* 2024 [2025]. Fungal diversity notes 1818–1918: taxonomic and phylogenetic contributions on genera and species of fungi. *Fungal Diversity* **130**: 1–261. Includes [pp 75–79] description of *Spirographa skorinae* Tsurykau, Brackel, Flakus & Kukwa (2024), a host-specific fungus on *Polycauliona polycarpa*, now known to occur in England.

PINO-BODAS, R., HERRERO, A., APTROOT, A., SØCHTING, U., MCMULLIN, R.T. & BURGAZ, A. R. 2024. Phylogenetic study of the *Cladonia cervicornis* group (Cladoniaceae, Lecanorales) discloses a new species, *Cladonia teuvoana*. *Lichenologist* **56**: 237–258. The new species **Cladonia teuvoana* Pino-Bodas, Burgaz & Aptroot is reported from Britain (New Forest, Hampshire).

PRIETO, M., WEDIN, M. & SCHULTZ, M. 2024. Phylogeny, evolution and a re-classification of the *Lichinomycetes*. *Studies in Mycology* **109**: 595–655. This revised classification involves several newly described or re-circumscribed genera. Changes relating to lichens in GBI are as follows. *Allopyrenis* M. Schultz & M. Prieto (2024) with *A. grumulifera* (Nyl.) M. Schultz & M. Prieto (2024) (syn. *Pyrenopsis grumulifera*) and *A. impolita* (Th. Fr.) M. Schultz & M. Prieto (2024) (syn. *Pyrenopsis impolita*). The generic name *Collemopsis* Nyl. ex Cromb. (1874) is resurrected for the single species *C. schaereri* (A. Massal.) Cromb. (1874) (syn. *Psorotrichia schaereri*). The genus *Forssellia* Zahlbr. (1906) includes *F. concordatula* (Nyl.) M. Schultz & M. Prieto (2024) (syn. *Pterygiopsis concordatula*). An expanded concept of *Phylliscum* now includes *P. rhodostictum* (Taylor) M. Schultz & M. Prieto (2024) (syn. *Cryptothelie rhodosticta*). The resurrected genus *Synalissina* Nyl. (1886) includes *S. botryosa* (A. Massal.) M. Schultz & M. Prieto (2024) (syn. *Lempholemma botryosum*), *S. cladodes* (Tuck.) M. Schultz & M. Prieto (2024) (syn. *Lempholemma cladodes*) and *S. intricata* (Arnold) Nyl. (1886) (syn. *Lempholemma intricatum*). The genus *Thelignya* A. Massal. (1855) is expanded in concept and now includes *T. lacustris* (P.M. Jørg. & R. Sant.) M. Schultz & M. Prieto (2024) (syn. *Pterygiopsis lacustris*).

PTACH-STYN, Ł., GUZOW KRZEMIŃSKA, B., LENDEMER, J.C., TØNSBERG, T. & KUKWA, M. 2024. Phylogeny of the genus *Loxospora* s.l. (Sarrameanales, Lecanoromycetes, Ascomycota), with *Chicitaea* gen. nov. and five new combinations in *Chicitaea* and *Loxospora*. *MycoKeys* **102**: 155–181. The lichen known as *Loxospora elatina* is shown to comprise two species, both of which occur in GB&I: **Loxospora chloropolia* (Erichsen) Ptach-Styn, Guzow-Krzem., Tønsberg & Kukwa (2024) and *L. elatina* s. str. [From the specimens cited in supplementary material it would appear that the former is the most prevalent in the GB&I]. The new genus *Chicitaea* Guzow-Krzem., Kukwa & Lendemer is described and includes *Chicitaea cristinae* (Guzow-Krzem., Kubiak & Kukwa) Guzow-Krzem., Kukwa & Lendemer (2024).

SUIJA, A., MCMULLIN, R.T. & LÖHMUS, P. 2023. A phylogenetic assessment of a fungicolous lineage in Coniocybomycetes: *Chaenotricha*, a new genus of *Trichaptum*-inhabiting species. *Fungal Systematics & Evolution* **12**: 255–269. Includes description

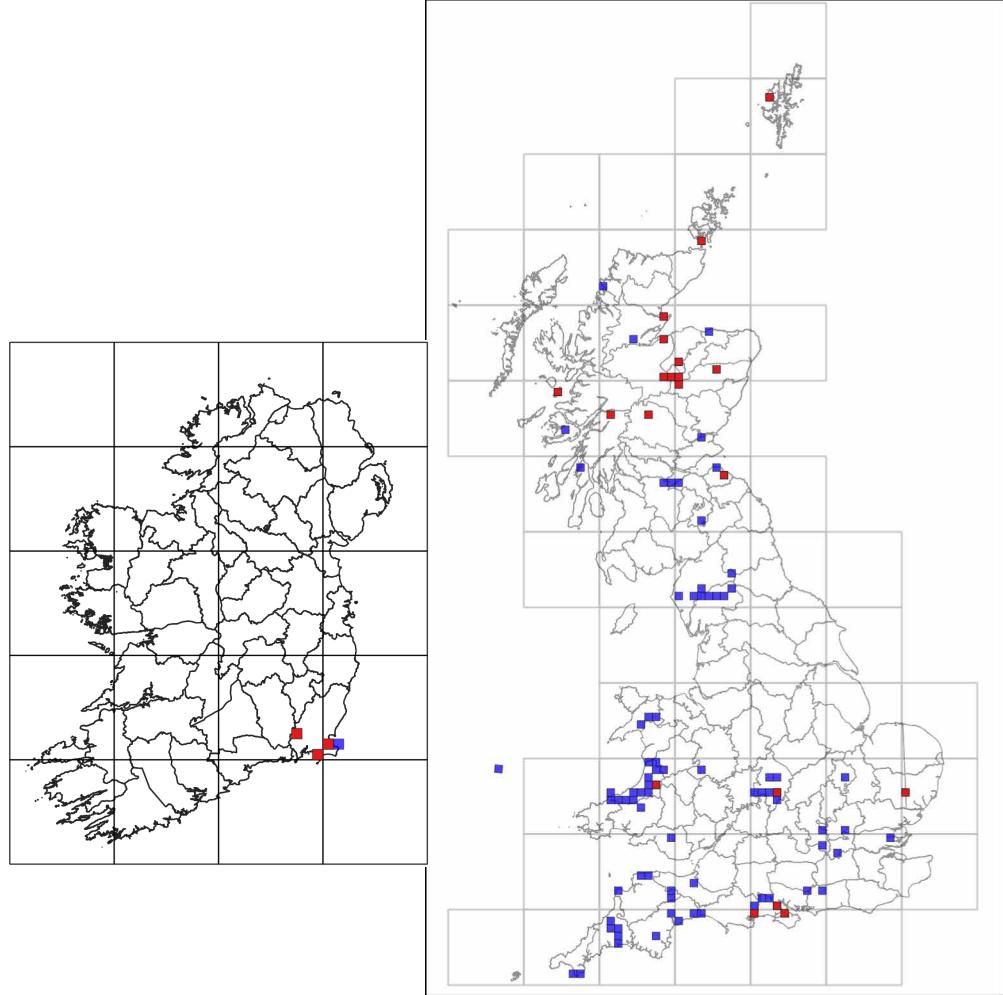
of *Chaenotricha ciliata* Suija, McMullin & P. Löhmus (2023), recently identified from the Abernethy Forest area in Morayshire, where it grows on old brackets of *Trichaptum abietinum* (Purplepore bracket) on dead pines.

ULF-HANSEN, F. 2025. *Exmoor*. The New Naturalist Library. London: William Collins. ISBN 978-0-00-838071-7. Pp. 530. Includes many references to lichens and lichen habitats in the national park.

VOITK, A., SAAR, I., BURZYNSKI, M. & CORRIOL, G. 2024. The *Arrhenia peltigerina* complex – preliminary report. *Botany* **102**: 248–267. The lichenicolous agaric *Arrhenia peltigerina* is found to be confined to North America. British collections belong to *A. cupulatoides* (Orton) I. Saar & Voitk (2024) (syn. *Omphalina cupulatoides* Orton) and the new species **A. mohniensis* Voitk, Burzynski & I. Saar (2024).

WHELAN, P. 2024. *Lichens of Ireland and Great Britain. A visual guide to their identification*. Holme Oak Press / National Botanic Gardens, Dublin. 2 vols, 970 pp. ISBN-978-17396751-1-0.

YAHR, R., CANNON, P., COPPINS, B., KOŠUTHOVÁ, A., MCCUNE, B., APTROOT, A. & SIMKIN, J. 2025. Lecanorales: Stereocaulaceae, including *Hertelidea*, *Lepraria*, *Squamaria* and *Stereocaulon*. *Revisions of British and Irish Lichens* **49**: 1–24. New to the GBI list are the crustose **Stereocaulon cephalocrustatum* McCune, E. DiMeglio & Tønsberg (2019) and **Stereocaulon urceolatum* (P.M. Jørg.) Högnabba (2006).


Brian Coppins
coppinsbrian@gmail.com

New, rare, and interesting lichens

Contributions to this section are always welcome. Submit entries, at least a fortnight before the Bulletin deadline to nri@britishlichensociety.org.uk. Andy Cross is editing the NRI entries and please contact him at that email address if you have any questions regarding the new, rare, and interesting lichens section in the Bulletin.

Records of lichens with any conservation status are particularly welcome, even from previously known localities. The Conservation Status of Lichens can be seen at the Joint Nature Conservation Committee’s website, jncc.gov.uk, in the ‘Conservation Status of UK Taxa’.

Maps of records; red = new species, blue = other records

Notes

Species written in italics and bold. When new to the British Isles, add the authority and date of publication

Habitat under what conditions the lichen is growing.

'NVC' in habitat text refers to vegetation types as described in Rodwell ed. *et al.*, 1991–2000. British Plant Communities, Volumes 1 to 5. Cambridge University Press, Cambridge.

Locality site name

Vice-county (VC) Number and VC Name follows that given in BLS Bulletin 79, or use the website <https://www.cucaera.co.uk/grp>

Grid Reference in the following format, AB1234, AB123.456, AB1234.5678, etc. using letters for the 100-kilometre squares

Altitude given as alt. 10m

Date as month and year, though days can be added if particularly important

Collector(s) if different from the author(s) of the entry use leg. or coll. Before the name(s)

Herbarium data given where housed, (if an institution, use bold (E) or K(M)) etc, photographs, or field record

Determination/Confirmation either Determined (Det.) by or Confirmed (Conf.) by

Comments as important facts related to the lichen

Status New to the vice-county, county, province, country etc.

Recorder/s either A. *Friend* or P.M. *England & F.R. Ireland* In italics

New to Britain and Ireland

Caloplaca sterilis Šoun, Khodos. & Vondrák (2011): terricolous records of *Caloplaca chlorina* can be referred to this species; most records are from coastal situations in grassland or cliff-top turf. Material has also recorded from the ground and *Thymus* stems in the Mendips and Šoun *et al.* (2011) also mention two similar 19th C specimens from old palings from Cherry Hinton near Cambridge (BM). Distinct in the grey-green (sometimes white pruinose), sorediate areoles/squamules. Examples are: on mats of the moss *Tortella flavovirens*, debris and humus on the ground and on the stems of *Atriplex portulacoides*, in grazed *Atriplex portulacoides* – *Festuca rubra* saltmarsh on stable shingle, Gravelly Marsh, North Solent NNR, VCII S. Hampshire, SZ4203.9702, November 2011, Sanderson 1978, confirmed J. Vondrák; on plant debris on side of shallow shingle ridge: Whiteness Head SSSI, VC96 Easterness, NH8021.5872, November 2005, Coppins 21771 (E); in goose-grazed grassland, Morrich More SSSI, VC106, East Ross, NH8583, August 1987, Coppins 11825 (E); in cliff top turf, Hill of White Hamars, South Walls, Hoy, VCIII, Orkney, ND3188, August 1999, Coppins 18610 (E); edge of cliff vegetation, The Houb, Tangwick, Esha Ness, Shetland Mainland, VCII2, Shetland, HU228.775, July 1990, D.H. Dalby (E). Apparently unvouchered records also from VC02, 06, & 74. For original description see Šoun *et al.* in *Lichenologist* 43. 113–135 (2011). **BLS No. 2914.** *B.J. Coppins & N. A. Sanderson*

Chaenothecopsis tasmanica Tibell (1985): on lignum on standing dead *Pinus*, in a stand of dead trees in native pinewood, Allt Druidh, Rothiemurchus, VC96 East Inverness-shire, NH938.074, alt. 340m, July 2000, leg. N.A. Sanderson (Herb. Sanderson 346). Collected on the 2000 BLS native pinewood workshop and determined then by B. J. Coppins as *Chaenothecopsis* sp. F. Also: on *Quercus* lignum, Craiganour birchwoods, Annat, Loch

Rannoch, VC88 Mid-Perthshire, NN64005915, alt. 210m, May 2007, Sanderson 1030 (Herb. Sanderson); on *Quercus* bark, c. 6 km W of Alford, by River Don, VC92 South Aberdeen, NJ516176, September 1998, B.J. & A.M. Coppins (Coppins 18088, E). This is a taxon long known from dry *Quercus* bark, and on wood of decorticate or hollowed trunks of *Alnus*, *Quercus* and *Pinus* in the Scottish Highlands. During editing of the Mycocaliciales LGBI3 account, the first specimen was compared with the descriptions of *Chaenothecopsis* species in Tibell (1998) *Bibliotheca Lichenologica* 71: 62–89 and was found to match *C. tasmanica* well. The fungus is similar to *C. nigra*, but has longer and wider ascospores (6–7.5 × 2–3 µm), which are medium brown, with septum dark and as dark as the spore wall and the stem has intertwined hyphae that swell in K. *Chaenothecopsis nigra* has smaller (5–6 × 1.5–2.0 µm) and paler spores, with a dark septum wall but paler cell walls and the stem has periclinally arranged hyphae, that do not swell in K. *Chaenothecopsis debilis* has similar spores, but these are longer (7–9 × 2.5–3 µm) and this species usually has a pale wine-red pigment in the stem that is K± purplish red, N+ violet-red. *Chaenothecopsis tasmanica* has been found widely in humid temperate areas of both hemispheres and its occurrence in old-growth woodland in Scotland is not unexpected. **BLS No. 2916.**

N.A. Sanderson & B.J. Coppins

Chaenotricha cilians Suija, McMullin & P. Löhmus (2023): on old brackets (basidiomes) of *Trichaptum abietinum* on dead pine trunks. Known from two localities: School Wood, Nethy Bridge, VC95 Moray, NJ01436.20828 & NJ01442.20911, 238m, March 2020, leg. S. Taylor, specimens not retained; *ibid.* NJ01458.20663 & NJ01488.20649, 31 January 2025, leg. S. Taylor (E); Lettoch Wood, Nethy Bridge, VC95 Moray, NJ01496.20368 & NJ01501.20371, March 2020, Gus Jones, specimens not retained; *ibid.* NJ01494.20425, 31 January 2025, leg. S. Taylor (E). Records from 2020 originally recorded as *Chaenotheca brunneola*. The 2025 collection from Lettoch Wood was sequenced and showed a 100% ITS match to authentic material. The species is morphologically almost identical to *Chaenotheca brunneola*, but it seems that the fungal substratum is a reliable distinguishing characteristic. For original description see Suija *et al.* in *Fungal Systematics & Evolution* 12: 255–269. **BLS No. 2912.** S. Taylor, P.F. Cannon & B.J. Coppins

Cladonia teuvoana Pino-Bodas, Burgaz & Aptroot (2024): in heath with *Calluna vulgaris* and *Erica cinerea*, Boltons Bench, Lyndhurst, New Forest, VC11 South Hampshire, SU313.080, alt. 36m, November 2019, leg. R. Pino-Bodas & N. A. Sanderson (Hb. MACB 127522). A new species in the *C. cervicornis* group described in Pino-Bodas *et al.* *Lichenologist* 56: 237–258. The new species is clearly separated from *C. cervicornis* by phylogenetic analyses of DNA sequences and does have a distinct morphology. It is likely, however, that only mature well-developed material can be reliably separated in the field. *Cladonia teuvoana* differs from *C. cervicornis* in having small squamules, that are white on the lower surface but darkening towards the base, the podetia with narrow scyphi that are abruptly widening, with a corticate surface. *Cladonia cervicornis* has larger squamules with purplish-greyish tinged ends and podetia that are wider

and gradually widen. The described specimens lack any proliferations, but otherwise morphologically similar material on the New Forest has been observed with single weak proliferations from the centre of the scyphi. *Cladonia teuvoana* occurs on heathlands and sandy areas in western Europe and is likely to be widespread in Britain. To date morphologically similar material has been observed elsewhere in the New Forest but has not been confirmed by sequencing. Here it is less frequent than *C. cervicornis* and occurs in lichen-rich heathland, typically in disrupted ground, such as hollow ways and path ruts, in dry grassy heaths. **BLS No. 2904.**

N.A. Sanderson

Lichenostella griseofusca van den Kolk & Diederich (2024): infecting the apothecia of *Lecanora chlorotera* s. lat. on *Quercus* trunk in S-facing former oak coppice, Oak Wood, The Brunt, Spott, VC82 East Lothian, NT680.735, alt. 140m, August 2015, Coppins 24965 (E), conf. by Paul Diederich. Also: blackening the apothecia of *Lecanora hypocarpa* on a *Betula* twig, Broadstone, Poole, VC9 Dorset, SZ007.950, J. Seawright, identified by Henk-Jan van der Kolk (from photographs and micrographs). The 2015 material and some subsequent collections were misidentified as *Tremella macrobasidiata* and reported as that species in NRI 126 (2020). The hymenium (disc) of infected apothecia is discoloured variously orange-brown to blackish. The anatomical features of the fungus are much obscured by the dense pigmentation, but it can usually be recognized by the presence on the surface of hyaline ‘asteroconidia’ overall c. 15–19.5 µm diam., with mainly four arms: each 4.5–8.5 × 3.0–4.2 µm (vs. 11–16 µm and 4–7.5 × 0.5–1.0 µm in *T. macrobasidiata*). Furthermore the asteoconidia of *Lichenostella griseofusca* often have a few (up to six) septa, whereas those of the *Tremella* are all aseptate. This fungus has been found at several sites in the Lothians, also near Forres in Moray (VC 95) as well as in Dorset (see above) in southern England; it is likely to be common. All collections have been on *Lecanora chlorotera* s. lat. For full description, illustrations and discussion see Diederich *et al.* in *Flora of Lichenicolous Fungi* Vol. 2: 260–263 (2024). **BLS No. 2906.**

B.J. Coppins & J. Seawright

Spirographa skorinae Tsurykau, Brackel, Flakus & Kukwa (2024): lichenicolous on *Polycauliona polycarpa*. The BLS Database has two records, previously identified as *Cornutispora ciliata*: Broadstone Allotments, Broadstone, VC9 Dorset, SZ0069.9507, 25m, 07 January 2025, leg. J. Seawright, specimen not retained; Needham Lake, Needham Market, VC25 East Suffolk, TM090.540, 37m, 25 October 2001, leg. C.J.B. Hitch (E). Known only as the *Cornutispora* anamorph. Full description and illustrations in Manawasinghe *et al.* in *Fungal Diversity* 130: 75–79 (2024 [2025]). **BLS No. 2913.**

B.J. Coppins & J. Seawright

Stereocaulon cephalocrustatum McCune, E. DiMeglio & Tønsberg (2019): on pebbles and low rocks in inner snowbed vegetation with *Polytrichum sexangulare*, just north of North Top, Lag Buidhe nan Damh, Beinn a’ Bhuid, Eastern Cairngorms SSSI, VC94 Banffshire, NJ0949.0094, 1160m, September 2016, Yahr 6149, 6152 (E); and on pebbles among bryophytes in snowbed, E of South Top in Ear-Choire Sneachdach,

Beinn a'Bhuid, Eastern Cairngorms SSSI, VC92 South Aberdeenshire, NO0940.9791, 1090m, September 2016, Yahr 6182a, 6186 (E); Original description in McCune *et al.* in *The Bryologist* 122: 197–218 (2019). Confirmed by ITS sequence comparison and phylogenetic placement with original material. **BLS No. 2915.**

R. Yahr

Stereocaulon urceolatum (P.M. Jørg.) Högnabba (2006): on vertical face of large basalt boulder, Cleadale SSSI, Eigg, VC104 North Ebudes, NM481.890, 86m, May 2012, Coppins 24163 (E). Original description, as *Muhria urceolata* P.M. Jørg., in Jorgensen & Jahns in *Notes RBG Edinb.* 44: 581–599 (1987). **BLS No. 2910.**

B.J. Coppins & R. Yahr

Taeniolella lecanoricola Huechert & Diederich (2018): forming effuse blackish colonies on *Glaucomariarupicola* on sandstone headstone, Alvie churchyard, Strathspey, VC96, Easterness, NH864.093, 220m, April 2024, Coppins 26267 (E). For full description, illustrations and discussion see Diederich *et al.* in *Flora of Lichenicolous Fungi* Vol. 2: 436–437 (2024). **BLS No. 2907.**

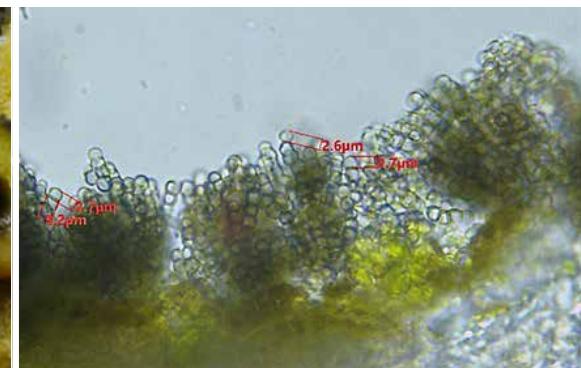
B.J. Coppins

Thelocarpon actonii P.F. Cannon & Coppins (2025): on degenerated mica-schist rock, NE slope of Meall Mòr, Glen Coe, VC98 Argyll, NN1111.5713, alt. 125m, November 2024. Acton AA1059 (K(M) 1444462). **BLS No. 2911.** For description see *Revisions of British and Irish Lichens* 48: 1–10.

A. Acton, P.F. Cannon & B.J. Coppins

Trimmatostroma vandenboomii Diederich (2024): lichenicolous fungus found on thallus and apothecial margins of *Catillaria lenticularis*, on a calcareous ironstone chest tomb in St Peter's churchyard, Kineton, SP335.510, VC38 Warwickshire, alt. 70m, 14.12.2024. Description on pp. 505–9 in *Flora of Lichenicolous Fungi*, Volume 2: Hyphomycetes (2024), by Diederich, Ertz and Braun (free download available at <https://www.mnhn.lu/science/flora-of-lichenicolous-fungi/?lang=en>). The dark hyphae 'resemble(s) cyanobacterial colonies and are described as 'loosely dispersed to agglomerated colonies forming irregular patches on the host thallus'. Microscopy shows an immersed mycelium (similar to *Intralichen* species; for more information, see the above Flora) and brown conidia which are thick-walled, and mainly 1-septate. Other hostlichens in the species description include: *Myriolecis albescens*, *Lecidella elaeochroma*, *Candelariella medians* and a number of other species 'often found in anthropogenic habitats'. Likely to be common on a range of corticolous and saxicolous crustose lichens. **BLS No. 2903.**

D. Napier


Xylohyphopsis xanthoriicola Pinault & Diederich (2024). A lichenicolous fungus on the thallus and apothecia of *Xanthoria parietina*, found on a fallen *Fraxinus* twig, along with several other lichenicolous species. Rather similar appearance to *Xanthoriicola physciae*. However, this species is not restricted to the apothecia, and it has much smaller conidia (2–3 µm) that are chained together in dense bunches. Warwick Road, Kineton, VC39 Warwickshire, SP331.511, alt. 80m, 09.12.24, Herb. DN, det. Paul Diederich. New to Britain and Ireland. It was only looked at microscopically because it was growing

around a small patch of *Illosporiopsis christiansenii* (pink in the photo). The description of *Xylohyphopsis xanthoriicola* was published in the new *Flora of Lichenicolous Fungi* Vol. 2 by Diederich, Ertz and Brown (published 09.12.24), based on a collection from France from December 2023. See pages 524–525. This British specimen was identified by the photos below being posted on the Lichenicolous Fungi Facebook group. It was co- incidentally collected on the same date that the name was formally published. It seems quite likely that it is being overlooked. **BLS No. 2902.**

D. Napier

Conidia surrounding *Illosporiopsis christiansenii*
Photo © D. Napier

Chains of small conidia in bunches
Photo © D. Napier

Zwackhiomyces kiszkanus D. Hawksw. & Miadlikowska (1997): on the upperside of two small old lobes of *Peltigera hymenina* growing in semi-open grassland around the edge of an area of bare sludge on disused former metal (Pb/Zn) mine, Cwm Mawr mine, c. 1/2 km northeast of Pontrhydfendigaid, VC46 Cardiganshire, SN734.671, alt. 215 m, January 2025. Herb. SPC. Immersed to slightly emergent black perithecia, c. 180–240 µm, exciple with finely granular dark brown pigment, hamathecium of branched-anastomosed pseudoparaphyses, asci thick-walled, ascospores 8/ascus, colourless, with perispore, 1-septate, c. 19.5–25.5 x 8.5–13 µm. Until recently known only from the holotype material (on *P. canina*) collected in Germany in 1869, but since found also in France and Russia. *Z. peltigerae* Miadlikowska & Alstrup, currently unreported for GB&I, also grows on species of *Peltigera*, but has smaller, c. 170–200 µm, semi-sessile perithecia and smaller ascospores, c. 13–16 x 3.5–6 µm. For full description & further details see Hawksworth, D.L. and Miadlikowska, J. (1997). New species of lichenicolous fungi occurring on *Peltigera* in Ecuador and Europe. *Mycological Research* 101(9):1127–1134. The species features in the key (couplet 21, p. 133) in Calatayud, V., Triebel, D. & Pérez-Ortega, S. (2007). *Zwackhiomyces cervinae*, a new lichenicolous fungus (Xanthopyreniaceae) on *Acarospora*, with a key to the known species of the genus. *Lichenologist* 39:129–134. **BLS No. 2920.**

S.P. Chambers

Other records

Abrothallus parmotrematis: on *Parmotrema perlatum* on fallen branch on ground under burry old veteran *Quercus* in old woodland, Coed Allt Ffos-colic, c. 2 km southwest of Cardigan, VC46 Cardiganshire, SN166.439, alt. 55m, February 2025. Field record. The second vice-county record.

S.P. Chambers

Abrothallus suecicus: on *Ramalina farinacea*, Aultgowrie woods, VC106 East Ross, NH4751, 70–100m, December 2024, specimen not retained. New to vice-county.

B.J. Coppins, J.R. Douglass & H. Paul

Acarospora umbilicata: in small quantity on the dry, rain-sheltered face of one rough siliceous grey stone block subjected to mortar downwash, on the east-southeast-facing gable wall of church, St David's church, Pontrhydfendigaid, VC46 Cardiganshire, SN729.663, alt. 180m, February 2025. Field record. The second vice-county record.

S.P. Chambers

Acrocordia cavata: growing on a *Prunus domestica* twig at Willhayes Park, Axminster, VC3 South Devon, SY2971.9889, alt. 27m, March 2023. New to Devon. Det. M. Powell.

F. Gibson

Agonimia opuntiella: amongst bryophytes on ±basic crags, Moel yr Ogof, Beddgelert, VC49 Caenarvonshire, SH5547, 600m, June 1995, Fryday 5355 (E); det. B.J. Coppins. New to vice-county, and apparently the earliest collected specimen from GB&I.

A.M. Fryday

Arctoparmelia incurva: on the northeast-facing sloping sides of several siliceous slabs along a c. 25 m length of old drystone hill wall below the top of Craig Caerhedyn hill, between the Cymerau & Llyfnant valleys, c. 2 km northeast of Eglwys Fach, VC46 Cardiganshire, SN710.968, alt. 285m, March 2025. Herb. SPC. Protocetraric acid-deficient chemotype. The first vice-county record.

S.P. Chambers

Arrhenia peltigerina s. lat.: parasitising *Peltigera didactyla* on lichen heath developing over coal tip deposits at Gelli Tips, Tonypandy, VC41 Glamorganshire, SS9822.9433, alt. 309m, November 2024. New to the vice-county.

N.G. Bacciu & J. McGill

Arthonia colombiana: on podetia of *Cladonia squamosa* var. *squamosa* on old wall, Inverwick, Glen Moriston, VC96 Easterness, NT32247 13523, 126m, October 2024, Coppins 26256 (E). BLS field meeting. New to vice-county.

B.J. Coppins

Arthonia digitatae: parasitising *Cladonia polydactyla* on a conifer stump, and growing in association with *Milospium lacoizquetae*, Cwm Marlais, Brechfa Forest, VC44 Carmarthenshire, SN5144.3268, alt. 139m, January 2025. New to the vice-county.

N.G. Bacciu & J. McGill

Arthonia fuscopurpurea: parasitising *Peltigera hymenina* on a trackside *Salix*, Cwm Marlais, Brechfa Forest, VC44 Carmarthenshire, SN5116.3320, alt. 143m, January 2025. New to the vice-county.

N.G. Bacciu & J. McGill

Arthonia graphidicola: parasitising *Graphis scripta* s. str. on a trackside *Salix*, Cwm Marlais, Brechfa Forest, VC44 Carmarthenshire, SN5116.3320, alt. 143m, January 2025. New to the vice-county.

N.G. Bacciu & J. McGill

Arthonia phaeophysciae: on *Phaeophyscia orbicularis* on trunk of *Acer pseudoplatanus* on old bank in sheep pasture, Blaen Cennant, 2 km east-southeast of Pisgah, VC46 Cardiganshire, SN699.771, alt. 310m, January 2025. Material used up in ident. The second Welsh and vice-county record, and first corticolous record for the vice-county.

S.P. Chambers

Arthrorhaphis aeruginosa: parasitising *Cladonia furcata* on lichen heath developing over coal tip deposits at Gelli Tips, Tonypandy, VC41 Glamorganshire, SS9821.9446, alt. 285m, November 2024. New to the vice-county.

N.G. Bacciu & J. McGill

Aspicilia granulosa: records from Wales, (i) to (iv) from VC49, Caernarfonshire; (v) to (vii) from VC46 Cardiganshire; (i) locally frequent on mine spoil at rear of pool, Allt-wen mine, Gwydyr forest, northwest of Betws-y-coed, SH780.591, alt. 240m, October 1994; (ii) on rim of blocky spoil around old mine shaft, Glynllifion mine, Gwydyr forest, southwest of Llanrwst, SH786.593, alt. 270m, November 1994; (iii) on well-lit mine spoil on northside of pool, Llyn Pencraig (Coed Mawr Pool) mine, Gwydyr forest, northwest of Betws-y-coed, SH778.584, alt. 200m, October 1994; (iv) on Cu-rich spoil on small heap of mine spoil on hillside below Yr Aran, c. 1 km west-southwest of Hafod-y-lan, c. 3 km northeast of Beddgelert, SH610.508, alt. 330m, October 2004; (v) locally frequent on well-lit spoil on west-facing side of mine spoil heap, Cwm Brwyno mine, c. 2 km east-southeast of Goginan, SN710.805, alt. 220m, April 1993; (vi) rare, on large block of spoil at the west end of Eaglebrook/Nantycagl mine, c. 8 km east of Tal-y-bont, SN734.892, alt. 380m, August 1993; (vii) rare, on south-facing block spoil east of the engine house, Esgair Hir mine, c. 8 km east of Tre Taliesin, SN733.912, alt. 460m, June 2013, S.P. Chambers & A.D. Hale Originally recorded under the field name *Aspicilia cinerea* 'papillata'. All herb. SPC. The first and subsequent Welsh records.

S.P. Chambers

Bacidia subturgidula: records from VC46 Cardiganshire; (i) on lignum exposed on dead basal stub of a standing old 'dwarfed' *Quercus*, the upper parts of the tree with some re-grown living branches, Coed Allt y Gaer, c. 3/4 km southwest of Bwlch-Llan, SN576.580, alt. 120m, January 2025. Site c. 9 km inland as the crow flies; (ii) in minute amount on hard, dry, but humid acid bark, on northeast-side of trunk of *Quercus* on old bank beside wood pasture-like area, c. 150 m north of Plas-y-wern/Wern Newydd, c. 1/2 km southeast of Gilfachreda, SN415.586, alt. 45m, February 2025. Site c. 1 km inland as the

crow flies. Both herb. SPC. The second and third vice-county & Welsh records.

S.P. Chambers

Bacidina caerulea: on *Sambucus*, Walcot Wood (NT), VC40 Shropshire, SO343.838, 220m, February 2025, Coppins 26268 (E). BLS Winter Workshop. Parathelial crown green. Apparently new to vice-county but might be represented by 19th century specimens of *Bacidina friesiana*.

B.J. Coppins

Bacidina celtica: fertile with two apothecia, on mossy branch of blown-down *Prunus spinosa* in humid old streamside woodland, ½ km N of Dyffryn-llynod, c. 1 ½ km west of Maesymillion, VC46 Cardiganshire, SN406.459, alt. 135m, March 2025. Field record. The first fertile vice-county record.

S.P. Chambers

Bacidina friesiana: on *Sambucus*, Walcot Wood (NT), VC40 Shropshire, SO343.838, 220m, February 2025, Coppins 26269 (E). BLS Winter Workshop. Parathelial crown green. First modern record for vice-county; 19th century specimens of *Bacidina friesiana* need to be checked as some may be *B. caerulea*.

B.J. Coppins

Bacidina phacodes: on a fallen twig in Hockley Woods, South Essex, VC18 South Essex, TQ833.921, alt. 64m, December 2024. First recent record for the vice-county.

M. Putnam & J. Skinner

Bacidina saxonii: on a flint pebble embedded in ground in woodland, Hatfield Park, VC20 Hertfordshire, TL235.088, alt. 85m, March 2025. First record for the county.

J. Skinner

Bellidia incompta: with apothecia, on exposed, rather soft lignum in a hollow of old *Acer pseudoplatanus* by track through policy woodland, just E of Balgone Lake, North Berwick, VC82 East Lothian, NT5683.8266, 40m, January 2025, Coppins 26255 (E). A new hectad for this red-listed species.

B.J. Coppins

Briancoppinsia cytospora: on *Pertusaria pertusa* on *Fagus* (tagged NT BIO-01045) in sheltered parkland, Arlington Park, VC4 North Devon, SS606.403, 155m, January 1990, leg. A.M. O'Dare [Coppins], specimen in E; det. B.J. Coppins. Apparently a new host record, at least in the UK. The host was also parasitised by *Marchandiomyces corallinus*.

A.M. & B.J. Coppins

Buellia violaceofusca (*Lecanographa amylacea* green algae morph): on dry bark on a veteran *Quercus*, in ancient deer park, Walcot Wood, Walcot Park, Clunbury, VC40 Shropshire, SO3422.8389, alt. 245m, February 2025. New to Shropshire and the third site from the Welsh Marches and east Wales. Growing with the *Trentepohlia* morph of *Lecanographa amylacea*. Recorded during the BLS winter workshop field meeting.

N.A. Sanderson, B.J. Coppins, N.G. Bacciu & J. Douglass

Calicium hyperelloides: on acid bark on a well-lit veteran *Quercus* in a glade in pasture woodland, French's Bushes, by Brockishill Car Park, New Forest, VC11 South Hampshire, SU2993.1176, alt. 40m, November 2024. The third New Forest site for a rare southern oceanic species.

N.A. Sanderson

Capronia normandinae: parasitising *Normandina pulchella* at Park Pit (a former china clay pit), Bodmin Moor, VC2 East Cornwall, SX1875.7117, alt. 236m, December 2024. New to Cornwall.

N.G. Bacciu & J. McGill

Cercidospora macrospora: in the apothecial discs of *Protoparmeliopsis muralis* on mini-Roche moutonnée-like sloping exposure of southeast-facing Silurian mudstone bedrock in sheep pasture, north-side of the B4340 c. ¼ km northwest of Pontrhydfendigaid, VC46 Cardiganshire, SN727.669, alt. 175m, February 2025. Herb. SPC. New to Wales.

S.P. Chambers

Cetraria muricata: well-developed clumps in very lichen rich open low productivity Short Heath (NVC: H4c), Lower Predannack Downs, West Lizard SSSI, Lizard, VC1 West Cornwall, SW6873.1497 & SW6873.1498, alt. 80m, March 2025. First record for mainland West Cornwall.

N.A. Sanderson

Chaenothecopsis savonica: on bark and lignum on an ancient *Taxus* in a churchyard, All Saints' Church, Steep, Petersfield, VC12 North Hampshire, SU7458.2528, alt. 105m, December 2024. New to North Hampshire.

N.A. Sanderson, D. Wright & K. Sandell

Circinaria hoffmanniana: on paving stones in the grounds of Killiane Castle, County Wexford, VCH12 Wexford, T058.167, alt. 10m, September 2024. First record for the county.

M. Putnam & J. Skinner

Cladonia bellidiflora: in open wet heath (NVC: M16a), Colaton Raleigh Common, East Devon Pebble Bed Heaths SSSI, VC3 South Devon, SY0422.8744, alt. 120m, October 2024, Herb. Sanderson 3076. First record from the East Devon Pebble Bed Heaths since 1965 and an unusual lowland record for this nearly exclusively upland and northern species.

N.A. Sanderson

Cladonia brevis: a large colony in open short-grazed heath (NVC: H2c) developed in the apparent borrow pit of a medieval/early modern pillow mound, along with two outlying colonies on path and path rut edges in *Agrostis curtisii* heath (NVC: H3c), The Ridge, Boltons Bench, Lyndhurst, New Forest, VC11 South Hampshire, SU312.082, SU312.081 & SU314.077, alt. 35m, November & December 2024, Herb. Sanderson 3071. Second site known in the New Forest for this internationally rare lichen and one with a much larger population than the first New Forest site.

N.A. Sanderson

Cladonia callosa: on the edge of a path in parched acid grassland in small area of heathland, Lambert's Castle Hill, Lambert's Castle SSSI, Marsh Wood, VC9 Dorset, SY3707.9868, alt. 250m, October 2024. New to west Dorset. N.A. Sanderson

Cladonia cyathomorpha: on moss on a siliceous drystone boundary wall along the access road to the hamlet of Kilmichael of Inverlussa, VC101 Kintyre, NR775.858, alt. 25m, August 2024. First record for VC101 Kintyre. Conf. N. Sanderson. A. Speca

Cladonia foliacea: on sandy soil from dumped sand/gravel pit waste, Brandon Marsh NR, SP385.757, VC38 Warwickshire, alt. 70m, February 2024. Det. N. Sanderson. First county record. S. Gaskin & D. Napier

Cladonia peziziformis: since the discovery of small relic populations in the less well grazed and prescribed burned West Lizard SSSI in 2023, much larger populations were found in the Goonhilly Downs SSSI and East Lizard Heaths SSSI in 2024 & 2025. These are more heavily grazed with more prescribed burning and sampling produced a total Lizard population of 109 patches in 62 10m grid squares. Habitats included rocky *Agrostis curtisii* Mixed Heath (NVC: M6c), scuffed swards in transitions to Short Heath (NVC: M4c) to Tall Heath (NVC: H5a), ruts and hollow ways in *Agrostis curtisii* Mixed Heath and Short Heath and on the sides of pinch points in old boundary banks supporting *Agrostis curtisii* Mixed Heath. In all sites it was dependent on combinations of heavy grazing, prescribed fire and disturbance. West Lizard SSSI, Goonhilly Downs SSSI and East Lizard Heaths SSSI, Lizard, VC1 West Cornwall, SW6814, SW6815, SW7318, SW7328, SW7317, SW7619, SW7819, SW7118, SW7119, SW7019, SW7219, SW7218, SW6917, SW6914 & SW6715, alt. 60–95m, October 2024 & March 2025. As this was not a full survey there are likely more colonies to be found and the meta-population is likely to be the second largest known in Europe after the New Forest. N.A. Sanderson

Cladonia rei: on humus in heathy open *Avenella flexuosa* – *Fagus sylvatica* pasture woodland (NVC: W15b) in a lichen-rich patch, possibly occupying the site of a long-rotted *Fagus* log, Burnham Beeches, VC24 Buckinghamshire, SU9549.8541, alt. 75m, April 2025. New to Buckinghamshire. N.A. Sanderson & R. Todd

Cladonia stereoclada: found in three new locations in the Lizard heaths, including very large populations on the scree in the lower Kynance valley and an inland location at Goonhilly Downs; a) in 13 10m grid squares on serpentine boulder scree and one rock ledge, lower valley, Kynance, West Lizard SSSI, VC1 West Cornwall, SW682.146, SW683.134, SW683.135 & SW684.135, alt. 20–40m, October 2024; b) in crevices in rubbly inert serpentine mine waste, on the site of a 19th C. share fraud mine (so no metal contamination), South Wheal Treasure, Goonhilly Downs SSSI, VC1 West Cornwall, SW7178.1969, alt. 90m, October 2024; c) on serpentine outcrops in Rock Heath (NVC: H7b), with *Hypotrachyna taylorensis*, coastal heathland, Mullion Cliff, Mullion Cliff to

Predannack Cliff SSSI, Lizard, VC1 West Cornwall, SW6673.1771 & SW6672.1770, alt. 60m, April 2025. The new finds indicate this internationally rare southern oceanic lichen has a strong population on the Lizard heaths. Monitoring of previously discovered populations at Lower Predannack Downs, also showed the species to benefit from cool prescribed fires in its damper Tall Heath (NVC: H5b) habitats. N.A. Sanderson

Cladonia strepsilis: one small patch in *Cladonia* heath on Norman's Law, VC85 Fife, NO3084.2009, alt. 200m, April 2025, field record, FLAG excursion. New to vice-county. B.J. Coppins

Cladonia zopfi: a single thallus in lichen rich wet heath (NVC: M16a) with *Cladonia arbuscula* subsp. *squarrosa*, Cranborne Common SSSI, Alderholt, VC9 Dorset, SU1061.1146, alt. 50m, October 2024. Third record for Dorset. N.A. Sanderson & A.M. Cross

Cladoniicola staurospora: parasitic on *Cladonia callosa*, on the side of a rabbit burrow in acid grassland, White Moor, Lyndhurst, New Forest, VC11 South Hampshire, SU3117.0830, alt. 35m, December 2024, Herb. Sanderson 3082. New to Hampshire and south central England. N.A. Sanderson

Cladophialophora parmeliae: parasitising *Hypotrachyna afrorevoluta* on a *Salix* growing on coal tip deposits at Gelli Tips, Tonypandy, VC41 Glamorganshire, SS9819.9431, alt. 308m, November 2024. New to the vice-county. N.G. Bacciu & J. McGill

Cliostomum flavidulum: on the trunks of two *Quercus* on east-facing slope of old woodland open to grazing, wooded slope in parcel above the Afon Ceri c. 3/4 km west of Rhydlewes, VC46 Cardiganshire, SN339.474, alt. 100m, October 2024. Herb. SPC. The second vice-county record. S.P. Chambers

Coenogonium tavaresianum: on flushed base rich bark on a veteran *Quercus* (Tree 19), in ancient deer park, Walcot Wood, Walcot Park, Clunbury, VC40 Shropshire, SO3459.8385, alt. 235m, February 2025. New to Shropshire. N.A. Sanderson, B.J. Coppins, N. Bacciu & J. Douglass

Collemopsidium sublitorale: on side of apex of *Patella vulgata* (common limpet) shell in littoral zone on lower rocky shore, cove below the Cliff Hotel, Gwbert, VC46 Cardiganshire, SN158.500, alt. c. 0m, September 2024. Sample consumed in ident. The first vice-county record. S.P. Chambers

Dendrographa latebrarum: at two locations on rocks in Naddle Woods, Haweswater, VC69 Westmorland, NY5015, alt. 305m. December 2024. First for England outside Devon. Conf. B. Coppins. C. Walker & C. Cant

Dendrographa latebrarum: on dry bark on a veteran *Quercus*, in ancient deer park, Walcot Wood, Walcot Park, Clunbury, VC40 Shropshire, SO3417.8391, alt. 240m, February 2025. New to Shropshire, and an unusual habitat for this mainly saxicolous species. Recorded during the BLS winter workshop field meeting.

N.A. Sanderson, B.J. Coppins, N. Bacci & J. Douglass

Dichoporis taylorii: on smooth trunk of *Acer pseudoplatanus* by fence, Walcot Wood (NT), VC40 Shropshire, SO343.838, 225m, February 2025, leg. B.J. Coppins (Herb. Steer 450) [BLS Winter Workshop]; both perithecia and pycnidia present. New to vice-county.

B.J. Coppins

Didymocystis 'aff. *epiphyscia* s. lat.': records from VC46 Cardiganshire; (i) on apothecial discs & locally on adjacent thallus of *Xanthoria parietina* on canopy twig of blown down *Crataegus monogyna* in gappy hedgerow in sheep pasture, above Cwm Magwr, c. 2 km southeast of Pisgah, SN682.761, alt. 220m, January 2025. Herb. SPC; (ii) on discs of *X. parietina* on fallen bough of *Fraxinus excelsior* in woodland, Coed Glanpwllafon, c. 2 1/4 km S of Cardigan, SN175.436, alt. 40m, February 2025. Material consumed in ident. Pycnidia with small, c. 4–5 x 2–3 µm, conidia. Not causing any noticeable discolouration to the host. New to Wales.

S.P. Chambers

Didymocystis ramalinae: on *Ramalina fastigiata* on *Crataegus* in grounds, Glendarroch, Gleannan Salach, Assynt, VC108 West Sutherland, NC0856.2342, 60m, February 2025, leg. I.M. Evans & G.M. Richards, specimen not retained. Det. B.J. Coppins. Only pycnidia detected; mostly in blackened hymenium of the host. New to vice-county.

B.J. Coppins

Didymocystis slaptoniensis: parasitising *Xanthoria parietina* on a fallen twig in Hockley Woods, VC18 South Essex, TQ833.921, alt. 64m, December 2024. First record for the county.

M. Putnam & J. Skinner

Diplotomma pharcidium: on a *Fraxinus* twig in the grounds of Killiane Castle, County Wexford, VCH12, T058.167, alt. 10m, September 2024. First record for the county.

M. Putnam & J. Skinner

Endococcus rugulosus: on *Porpidia tuberculosa* on N-facing crag, Norman's Law, VC85 Fife, NO306.202, alt. 220m, April 2025, Coppins 26281 (E), FLAG excursion. New to vice-county.

B.J. Coppins

Enterographa brezhonega: parasitising *Coenogonium luteum* on an old coppiced *Fraxinus* in a hedge bank at West Muchlarnick CWT reserve, VC2 East Cornwall, SX2145.5610, alt. 105m, March 2025. Herb. Bacci. New to Cornwall.

N.G. Bacci & J. McGill

Epicladonia sandstedei: parasitising *Cladonia ramulosa* growing in lichen heath developing over coal tip deposits at Gelli Tips, Tonypandy, VC41 Glamorganshire, SS9823.9429, alt. 309m, November 2024. New to the vice-county.

N.G. Bacci & J. McGill

Epigloea medioincrassata: growing on an algal film overgrowing a thallus of *Peltigera hymenina* in lichen heath at Stannon Lake (a former china clay pit), Bodmin Moor, VC2 East Cornwall, SX1274.8060, alt. 245m, December 2024. New to Cornwall.

N.G. Bacci & J. McGill

Fellhaneropsis myrtillicola: growing on a fallen *Quercus* branch in Cwm Marlais, Brechfa Forest, VC44 Carmarthenshire, SN5121.3289, alt. 150m, November 2024. New to the vice-county.

N.G. Bacci & J. McGill

Fellhaneropsis myrtillicola: growing on a *Salix* branch at Park Pit (a former china clay pit), Bodmin Moor, VC2 East Cornwall, SX1863.7124, alt. 239m, December 2024. Second record for Cornwall.

N.G. Bacci & J. McGill

Fuscidea recens: on N-facing basalt outcrop, Norman's Law, VC85 Fife, NO3054.2025, alt. 260m, April 2025, field record, FLAG excursion. New to vice-county.

B.J. Coppins

Fuscopannaria ignobilis: on two trunks of *Populus tremula* on N side of track, Aultgowrie woods, VC106 East Ross, NH47363.51498 & NH47371.51502, 80m, December 2024, field record. All thalli sterile. A new hectad for this red-listed species, and second site known in the vice-county.

B.J. Coppins, J.R. Douglass & H. Paul

Graphis pulverulenta: on trunk of birch tree in hotel grounds at Killiane Castle, County Wexford, VCH12 Wexford, T058.167, alt. 10m, September 2024. First record for the county and first for Ireland.

M. Putnam & J. Skinner

Gylectiphila pluriseptata: parasitic on *Pachyphiale carneola* on veteran oak in ancient deer park, Walcot Wood, Walcot Park, Clunbury, VC40 Shropshire, SO3417839, alt. 240m, February 2025. New to Shropshire. This lichenicolous fungus appears to be a near obligate *Pachyphiale* parasite and should be looked for as on orange stained *Pachyphiale* thalli in woodlands where the host is frequent.

N.A. Sanderson, B.J. Coppins, N. Bacci & J. Douglass

Gylectiphila pluriseptata: parasitic on *Pachyphiale carneola* on six *Corylus* bushes and two *Quercus* trees in a long neglected, and formerly coppiced shaw, next the ancient pasture woodland of Ebernoe Common, Bricklin Rough, Ebernoe, VC13 West Sussex, SU979276, SU979274 & SU979275, alt. 30m, February 2025. New to Sussex.

N.A. Sanderson

Gyalectiphila pluriseptata: parasitising *Pachyphiale carneola* near Hembury Wood, Buckfastleigh, VC3 South Devon, SX7348.6882, alt. 60m, March 2025. New to Devon.
N.G. Bacciu & B. Benfield

Haworthiania peltigerae: parasitising *Peltigera didactyla* on lichen heath developing over coal tip deposits at Gelli Tips, Tonypandy, VC41 Glamorganshire, SS9820.9462, alt. 233m, November 2024. New to the vice-county.
N.G. Bacciu & J. McGill

Hymenelia odora: on stones near summit, Ben More, Mull, VC103 Mid Ebudes, NM525.330, 920m, September 2024, leg. Gavin Coppins (E); det. B.J. Coppins. New to Mull. B.J. Coppins

Hypotrachyna lividescens: On *Salix cinerea* twigs on edge of heathland in a sheltered valley, Gwenter, Goonhilly Downs SSSI, VC1 West Cornwall, SW7402.1813, SW7397.1800 & SW7392.1757, October 2024, alt. 50–60m, October 2024. A new location for a lichen that is likely colonising from France.
N.A. Sanderson

Hypotrachyna taylorensis: on a serpentine outcrop in Rock Heath (NVC: H7b), with *Cladonia stereoclada*, coastal heathland, Mullion Cliff, Mullion Cliff to Predannack Cliff SSSI, Lizard, VC1 West Cornwall, SW6673.1771, alt. 60m, April 2025. The first post-1960 record for West Cornwall.
N.A. Sanderson

Illosporiopsis christiansenii: on *Physcia leptalea* on fallen branch of *Fraxinus excelsior* under tree at edge of pasture, Llanina Point, c. 1 km east of New Quay, VC46 Cardiganshire, SN406.593, alt. 20m, February 2025. Field record. The first record of the fungus on this host for Wales.
S.P. Chambers

Ionaspis lacustris: on serpentine pebbles in a seasonally flooded pan, in winter wet Short Heath (NVC: H4c), Predannack Airfield, Higher Predannack Downs, West Lizard SSSI, Lizard, VC1 West Cornwall, SW681.171, alt. 90m, April 2025. Second recent record for West Cornwall and an unusual record from rocks in seasonally flooded heathland pans. This is a habitat where the species occurs outside of its main range and where it may be overlooked.
N.A. Sanderson

Karstenia chrysophaea: on flushed base rich bark on a veteran *Quercus* (Tag 01007), in ancient deer park, Walcot Wood, Walcot Park, Clunbury, VC40 Shropshire, SO3413.8392, alt. 245m, February 2025. New to Shropshire, recorded during the BLS winter workshop field meeting.
N.A. Sanderson, B.J. Coppins, N. Bacciu & J. Douglass

Knufia peltigerae: on dead lobe of *Peltigera hymenina* in semi-open metalliferous *Calluna vulgaris* heath on spoil of former Pb/Zn mine, Esgair Gad Fach mine, c. 1½ km south of Llanddewi Brefi, VC46 Cardiganshire, SN667.537, alt. 365m, January 2025. Material used up in ident. The second Welsh and vice-county record.
S.P. Chambers

Laetesaria lichenicola: parasitising *Physcia aipolia* on apple bark in hotel grounds at Ballinaboola, County Wexford, VCH12 Wexford, S792.248, alt. 78m, August 2024. First for Ireland.
M. Putnam & J. Skinner

Laetisaria lichenicola: lichenicolous fungus on *Physcia adscendens* (pink, with 2-spored basidia) on a *Carpinus* trunk in a car park at Banks End, Wyton, Huntingdon, TL270.726, VC31 Huntingdonshire, alt. 10m, December 2024. First county record.
D. Napier

Lambiella insularis: forming small patches in thalli of *Glaucomaria rupicola*, Norman's Law, VC85 Fife, NO3080.2014, alt. 220m, April 2025, field record, FLAG excursion. New to vice-county.
B.J. Coppins

Lecania atrynoides: on dry, slightly overhung vertical east-facing Ordovician mudstone rockface on sea cliff in the xeric supralittoral zone, rocky coast below the Cliff Hotel, Gwbert, VC46 Cardiganshire, SN159.499, alt. 15m, September 2024. Sample consumed in ident. The second vice-county record.
S.P. Chambers

Lecania chlorotiza: on oak in damp north-facing area below the waterfall at Lodore Falls, Borrowdale, VC70 Cumberland, NY2651.1872, alt. 109m. September 2024. Conf. N. Sanderson. First for VC70 and first for the north of England since 1987.
C. Walker et al., Cumbria Lichen and Bryophyte Group meet

Lecanographa abscondita: On rock in Naddle Woods, Haweswater, VC69 Westmorland, December 2024, NY5001.1521, alt. 323m. December 2024. First for England. Conf. B. Coppins.
C. Walker & C. Cant

Lecanographa amylacea (*Trentepohlia* morph): on dry bark on a veteran *Quercus*, in ancient deer park, Walcot Wood, Walcot Park, Clunbury, VC40 Shropshire, SO3422.8389, alt. 245m, February 2025. New to Shropshire. Sterile but confirmed by the K/UV- spot test and by growing with "*Buellia violaceofusca*" the distinctive green algae morph of *Lecanographa amylacea*. The second recently confirmed English record; many older English records are probably of sterile *Lecanographa lyncea*, which was also present at Walcot. Recorded during the BLS winter workshop field meeting.
N.A. Sanderson, B.J. Coppins, N. Bacciu & J. Douglass

Lecanora alboflavida: with apothecia on *Quercus*, Low Stile Wood, Seatoller Wood, Sourmilk Gill & Seathwaite Graphite Mine SSSI, VC70 Cumberland, NY2413, November 1990, Coppins 26272 (E). A rare fertile occurrence of this usually sterile, sorediate species.
A.M. & B.J. Coppins

Lecanora barkmaniana: on *Salix* branch, Walcot Wood (NT), VC40. Shropshire, SO343.838, 225m, February 2025, Coppins 26271 (E). BLS Winter Workshop. New to

vice-county.

B.J. Coppins

Lecidella viridans: on south-facing siliceous rock on Lantern Hill, Ilfracombe, VC4 North Devon, SS525.478, alt. <5m, March 2023. Det. B.J. Coppins. First record for the county.

M. Putnam & J. Skinner

Leimonia erratica: fertile, on southwest-facing curved front of softwood fence rail, Stakraft Dinas Reservoir fishery car park, c. 1½ km N of Ponterwyd, VC46 Cardiganshire, SN752.823, alt. 280m, April 2025. Field record. The first vice-county lichenicolous record.

S.P. Chambers

Lepraria finkii: on rocks at entrance to cave tunnel in N-facing sea cliff, E of Findochty, VC94 Banff, NJ4722.6824, June 2024, leg. Nigel Feilden, specimen not retained; det. B.J. Coppins. New to vice-county – indicating how under-recorded this vice-county is!

B.J. Coppins

Lepraria vouauxii: on the boundary wall of St. Peter's church at Kilscoran, County Wexford, VCH12 Wexford, T1079.1135, alt. 23m, September 2024. First record for the county.

M. Putnam & J. Skinner

Lichenochora physciicola: parasitising *Physcia tenella* on a fallen twig in Hockley Woods, South Essex, VC18 South Essex, TQ833.921, alt. 64m, December 2024. First record for the county.

M. Putnam & J. Skinner

Lichenochora weillii: parasitising *Physconia grisea* on a fallen *Quercus* branch at Barford Park, VC5 South Somerset, ST2329.3595, alt. 72m, December 2024. New to Somerset.

N.G. Bacciu

Lichenomphalia hudsoniana: on humus in heathy open *Avenella flexuosa* – *Fagus sylvatica* pasture (NVC: W15b) woodland in a lichen rich patch, possibly occupying the site of a long-rotted *Fagus* log, Burnham Beeches, VC24 Buckinghamshire, SU9549.8541, alt. 75m, April 2025. New to Buckinghamshire and one of the few modern lowland records for this upland species.

N.A. Sanderson & R. Todd

Lichenotubeufia heterodermiae: parasitising *Physcia leptalea* on a *Crataegus* twig at West Muchlarnick CWT reserve, VC2 East Cornwall, SX2195.5566, alt. 79m, March 2025. New to the vice-county.

N.G. Bacciu & J. McGill

Lichenotubeufia heterodermiae: records from VC46 Cardiganshire; (i) on moribund *Physcia aipolia* on branch of *Salix cinerea* beside overgrown pool in scrubby wet woodland, c. ½ km north-northeast of Neuadd Cross, SN264.460, alt. 90m, October 2024; (ii) on *Physcia tenella* on branch of planted *Quercus* in developing

upland woodland within forestry, east end of the Peraidd Fynydd forestry plantation above the Afon Tarennig, SN822.821, alt. 345m, November 2024. Specimens not retained but confirmed microscopically. The first corticolous records and first find on *P. tenella* for the vice-county.

S.P. Chambers

Lichinodium sirosiphoidicum: on the steep part of a low rockface in light shade near top of knoll in old woodland, Cwm Llyfnant, VC46 Cardiganshire, SN716.974, alt. 80m, February 2015. Field record supported by digital photographs, det. A. Orange. The second vice-county record.

S.P. Chambers

Marchandiomyces corallinus: on thalli of *Rinodina atrocinerea* on coastal rock outcrop in pasture, Ty-Gwyn, Ynys-las, VC46 Cardiganshire, SN612.926, alt. 10m, October 2024. Field record. Seemingly the first record of this plurivorous lichenicolous fungus on the genus *Rinodina*.

S.P. Chambers

Melanelixia subaurifera: one weakly fertile thallus with c. 4 small juvenile apothecia, on horizontal upperside of branch of planted *Quercus* in burial yard, St Gwynllan's church, Nantcwnlle, Bwlch-Llan, VC46 Cardiganshire, SN576.586, alt. 195m, January 2025. Field record. The second fertile find for VC46 & interestingly the first was also in a churchyard on the branch of a planted tree.

S.P. Chambers

Melaspilea interjecta: on stones near summit, Ben More, Mull, VC103 Mid Ebudes, NM525.330, 920m, September 2024, leg. Gavin Coppins, specimen not retained; det. B.J. Coppins. New to Mull.

B.J. Coppins

Micarea aeruginoprasina: on damp acid soil under trees on the bank of an ancient moat site, with *Trapeliopsis gelatinosa*, in pasture woodland, Harlequin's Moat, Burnham Beeches, VC24 Buckinghamshire, SU9458.8574, alt. 85m, April 2025, Herb. Sanderson 3090. A new habitat for this recently described lichen, which was previously reported only from bark and lignum.

N.A. Sanderson & R. Todd

Micarea hedlundii: growing on a dead standing *Quercus* trunk alongside the River Fowey in Draynes Wood SSSI, VC2 East Cornwall, SX2226.6862, alt. 188m, December 2024. Second record for Cornwall.

N.G. Bacciu & J. McGill

Micarea xanthonica: on low mounds of humus in very lichen rich open low productivity Short Heath (NVC: H4c), recorded in 12 10m grid squares, Lower Predannack Downs, West Lizard SSSI, Lizard, VC1 West Cornwall, SW6814, SW6914 & SW6815, alt. 75–80m, March 2025. New to the Lizard Heaths and recorded from an unusual habitat of humus in damp heathland.

N.A. Sanderson

Milospium lacoizquetae: parasitising *Cladonia polydactyla* on conifer stump, and growing in

association with *Arthonia digitatae*, Cwm Marlais, Brechfa Forest, VC44 Carmarthenshire, SN5144.3268, alt. 139m, January 2025. New to the vice-county. N.G. Bacciu & J. McGill

Muellerella hospitans: in the apothecia of *Bacidia rubella* on trunk of freestanding maiden *Fraxinus excelsior* at edge of courtyard, Plas Llanina, 1½ km east of New Quay, VC46 Cardiganshire, SN405.597, alt. 10m, February 2025. Field record. The second extant locality for the vice-county.

S.P. Chambers

Nectriopsis physciicola: parasitising *Physcia leptalea* on a dead *Ulmus* sp. in a field boundary near Hartland, VC4 North Devon, SS240.229, alt. 112m, February 2024. Det. F. Gibson. New to Devon.

C. Gurton

Nesolechia oxyspora: forming galls on *Parmelia saxatilis* on a drystone wall, Wren Crag, Thirlmere, VC70 Cumberland, NY31507.20204, 292m. It is possible that this species does form its own lichenised thallus; the thallus forming the galls did look very distinct from that of *P. saxatilis* and somewhat *Punctelia*-like. See the discussion in LGBI3, vol. 33, Parmeliaceae p.43. New to the vice-county and the only post-1960 record for northern England.

P. Bisset, C. Walker & C. Cant

Niesslia cladoniicola: parasitising *Cladonia ramulosa* in reseeded heath at Park Pit (a former china clay pit), Bodmin Moor, VC2 East Cornwall, SX1861.7125, alt. 242m, December 2024. New to England.

N.G. Bacciu & J. McGill

Normandina pulchella: on *Fagus* by wide ride in conifer plantation, Blawhorn Moss, VC84 West Lothian, NS880.676, 220m, June 2024, field record; also on *Fagus* in tree row in field, Longridge Moss, NS958.618, 210m, June 2024. Field record. New to vice-county.

N.A. Sanderson

Normandina pulchella: on mossy trunk of *Fraxinus*, Burngrange Cemetery, West Calder, VC83 Midlothian, NT009.626, 180m, February 2025. Field record. New to vice-county. This follows its recent discoveries in VC84 West Lothian by Neil Sanderson. B.J. Coppins

Opegrapha fumosa: on *Fraxinus* in forest by river, below [W of] Hartford, Haddeo Valley, VC5 South Somerset, SS9529, May 1978, F. Rose & T.D.V. Swinscow (TTN); det. B.J. Coppins. Identified from a box of Somerset lichens given to BJC by Francis Rose a few weeks before he died and recently donated to the Taunton Museum. This appears to be the first known, identified collection of this species.

B.J. Coppins

Opegrapha niveoatra: on an old mature *Taxus baccata* branch in Haselor churchyard, VC38 Warwickshire, SP12373.57917, alt. 55m, November 2024. First VC38/VC38c record. (Subsequently found on yews at four other VC38 Churchyard locations). Conf. B.J. Coppins.

S. MacDonald

Opegrapha niveoatra: on *Taxus* branch, St. Peter's churchyard, Hampton Lucy, SP256.570, VC38 Warwickshire, alt. 40m, February 2024.

S. Gaskin & D. Napier

Opegrapha vermicellifera: on the trunk of a veteran *Cedrus* in the grounds of Killiane Castle, County Wexford, VCH12 Wexford, T058.167, alt. 10m, September 2024. First record for the county.

M. Putnam & J. Skinner

Paranectria oropensis: on *Rinodina sophodes* on branch of *Salix cinerea* in ditch dominated by *Phragmites australis*, coastal pasture east of the Afon Leri c. 600 m south of Ynys-las, VC46 Cardiganshire, SN619.924, alt. c. 2m, October 2024. Herb. SPC. The first record of the fungus on this host for the vice-county.

S.P. Chambers

Parmelia carporrhizans: abundant large fertile thalli on numerous fallen branches of at least four *Fraxinus excelsior* and *Quercus* trees in and around Llanina Woods, c. 1 km east of New Quay, VC46 Cardiganshire, SN40-59-, alt. 10–20m, February 2025. Field record. The largest known population in the vice-county and the Llanina woods area is perhaps the British stronghold for the species.

S.P. Chambers

Parmelina carporrhizans: on a *Fraxinus excelsior* branch from a felled tree in the wildlife garden at Devon Wildlife Trust's HQ, Cricklepit Mill, Exeter, VC3 South Devon, SX9194.9213, alt. 11m, December 2024. First record for Exeter (SX99) since 1883. There are plans to translocate to a living tree.

L. Mahon & S. Mistley

Parmotrema pseudoreticulatum: on roadside ash trees at Ballinaboola, County Wexford, VCH12 Wexford, S793.247, alt. 68m, August 2024. First for the county.

M. Putnam & J. Skinner

Peltigera venosa: Twenty+ small thalli within one metre amongst moss and sparse vegetation on gravelly mine-spoil. Some thalli fertile. Dufton mine, VC69 Westmorland, NY71611.27759, alt. 521m. January 2025. First for VC69 and second recent record on western Pennines.

C. Walker & C. Cant

Perigrapha superveniens: on *Parmelia sulcata* on cut branch of old pear (*Pyrus communis*) in garden, Glendarroch, Gleannan Salach, Assynt, VC108 West Sutherland, NC0854.2342, 60m, February 2025, leg. I.M. Evans & G.M. Richards (E), det. B.J. Coppins; also nearby on *Crataegus* branch, NC0856.2342. New to vice-county.

B.J. Coppins

Phaeographis smithii: on young *Quercus* branch in shaded copse by stream, by Spittle Brook, W of Alcester Lodge, Alcester, VC38 Warwickshire, SP06500.59236, alt. 70m, November 2024, specimen in E. Det. B. Coppins. New to vice-county.

S. MacDonald

Physcia clementei: found abundantly fertile on the trunk of a *Magnolia* in the grounds of Killiane Castle, County Wexford, VCH12 Wexford, T058.167, alt. 10m, September 2024. First record for the county.

M. Putnam & J. Skinner

Physcia clementei: on *Fraxinus* trunk at Cuttle Pool NR, previously a sand/gravel quarry, VC38 Warwickshire, SP202.753, alt. 110m, April 2024. Det. J. Skinner. First county record.

S. Gaskin & D. Napier

Physcia leptalea: one thallus on exposed soily bedrock on southeast-facing slope of dry grassland in cattle pasture, c. 500 m S of Pentood-uchaf farm, c. 2½ km south of Cardigan, VC46 Cardiganshire, SN173.435, alt. 75m, February 2025. Field record. The first saxicolous record for the vice-county.

S.P. Chambers

Physcia tribacia: on trunk of a veteran cedar in hotel grounds at Killiane Castle, County Wexford, VCH12 Wexford, T058.167, alt. 10m, September 2024. First record for the county.

M. Putnam & J. Skinner

Physcia tribacioides: on trunk of *Prunus* in hotel grounds at Ballinaboola, County Wexford, VCH12, S792.248, alt. 78m, August 2024. First recent record for the county.

M. Putnam & J. Skinner

Physconia perisidiosa: on a *Carpinus* trunk in a car park, Banks End, Wyton, Huntingdon, TL270726, VC31 Huntingdonshire, alt. 10m, December 2024. (Coarsely pruinose, K-, C-, black squarrose rhizines, sorediate/isidiate.) First county record.

D. Napier

Placopsis lambii: on flat upperside of horizontal softwood rail of bridge over stream in forestry plantation, east end of the Peraidd Fynydd plantation above the Afon Tarennig, VC46 Cardiganshire, SN823.821, alt. 340m, November 2024. Field record. Just in VC46 by c. 2 m on the VC46/47 border. The second British record on worked wood and the first find on this substrate for the vice-county.

S.P. Chambers

Placynthium tremniacum: on soil, Florence Mine, Egremont, VC70 Cumberland, NY017.102, alt. 60m, September 2024. Herb. P. Martin. Conf. S.P. Chambers. First record for the vice-county.

P.L. Martin

Porina collina: growing in a wound track on an east facing trunk of a *Quercus* in abandoned oak coppice, Draynes Wood SSSI, VC2 East Cornwall, SX2159.6842, alt. 154m, December 2024. Det. N. A. Sanderson. Herb. Bacciu. New to Cornwall.

N.G. Bacciu & J. McGill

Pronectria anisospora: on *Hypogymnia physodes* on *Betula*, Aultgowrie woods, VC106, East Ross, NH4751, 70-100m, December 2024, specimen not retained.

New to vice-county.

B.J. Coppins, J.R. Douglass & H. Paul

Pronectria anisospora: on *Hypogymnia physodes* on the vertical, southeast-facing flat side of a wooden gate rail on wet valley floor, Camddwr Fach, c. 1 km northwest of Swyddffynnon, VC46 Cardiganshire, SN681.668, alt. 195m, January 2025. Herb. SPC. The first record of this fungus on its host on worked wood for the vice-county.

S.P. Chambers

Protoparmeliopsis achariana Photo © C. Cant

Protoparmeliopsis achariana: On boulder in stream of Measand Beck, Haweswater, VC69 Westmorland, NY47077.15842, alt. 359m, March 2025. Conf. J. Douglass. First record in the vice-county away from Brown Cove, Helvellyn.

C. Walker & C. Cant

Psammina stipitata: parasitising *Opegrapha vulgata* on trunk of ash tree in a private garden at Kilmore, County Wexford, VCH12 Wexford, S9769.0457, alt. 16m, September 2024. First record for Ireland.

M. Putnam

Pseudevernia furfuracea var. *furfuracea*: on fallen *Aesculus hippocastanum*, on a branch, Edge Hill Woods, VC38 Warwickshire, SP380.480, alt. 315m, March 2024. Cortex K+ yellow, medulla C-, KC faint pink. First county record since a single 1960 record of *P. furfuracea* s. lat.

D. Napier

Punctelia reddenda: on shaded *Quercus* branch at Cuttle Pool NR, previously a sand/gravel quarry, VC38 Warwickshire, SP201.753, alt. 110m, April 2024. Det. N. Sanderson. First (or second) county record.

S. Gaskin & D. Napier

Pycnothelia papillaria: locally frequent in very lichen rich open low productivity Short Heath (NVC: H4c) and recorded in 32 10m grid squares, Lower Predannack Downs,

West Lizard SSSI, Lizard, VC1 West Cornwall, SW6814, SW6914 & SW6815, alt. 75–80m, March 2025. This appears to be the last remaining large population on the Lizard heaths. This lichen was recorded as frequent and widespread in the Lizard heaths in the 1950s but is now otherwise rare.

N.A. Sanderson

Reichlingia anombrophila: c. 4 small thalli on dry bark on northside of trunk of old *Crataegus monogyna* on sheep pasture bank, Cwm Nant y Gledryd, c. 1½ km E of Pisgah, VC46 Cardiganshire, SN686.777, alt. 200m, January 2025. Field record. New phorophyte record for the vice-county for this increasing species.

S.P. Chambers

Reichlingia dendritica (syn. *Arthonia atlantica*): rare and in very poor condition (due to mollusc-grazing) on well-lit, vertical rock faces in three locations in old woodland, Coed Cymerau, c. 1 km northeast of Eglwys Fach, VC46 Cardiganshire, SN697.962, alt. c. 110–120m, March 2025. Field record. New site for the vice-county.

S.P. Chambers & J.C.E. Hope

Rhizocarpon lecanorinum: on exposed basaltic outcrop, Norman's Law, VC85 Fife, NO3077.2016, alt. 220m, April 2025, field record, FLAG excursion. New to vice-county.

B.J. Coppins

Rhizocarpon postumum: c. 3 small, c. 6–8 mm across, thalli on the fully-lit rounded apex of a large siliceous gritstone boulder (glacial erratic) wedged in upland stream channel, Nant Hirnant, W of Drybedd, c. 1½ km north-northeast of Dinas Reservoir, VC46 Cardiganshire, SN754.837, alt. 325m, April 2025. Herb. SPC. New to Wales. S.P. Chambers

Rinodina flavosoralifera: on *Betula* trunk, Aultgowrie woods, VC106, East Ross, NH4751, 70–100m, December 2024, Coppins 26260 (E). New to vice-county.

B.J. Coppins, J.R. Douglass & H. Paul

Rinodina flavosoralifera: on south-facing trunk of freestanding *Alnus glutinosa* in rushy strip on streambank, beside the Camddwr Fach, 1 km west-northwest of Swyddffynnon, VC46 Cardiganshire, SN685.663, alt. 185m, January 2025. Herb. SPC. The third vice-county, fourth Welsh and a new hectad record.

S.P. Chambers

Rinodina teichophila: one small thallus on southwest-facing side of rail of softwood fence beside coastal path, c. 100 m west of the Cliff Hotel, Gwbert, VC46 Cardiganshire, SN159.501, alt. 10m, September 2024. Sample consumed in ident. The first lignicolous record for the vice-county.

S.P. Chambers

Roselliniella cladoniae: parasitising *Cladonia diversa* in reseeded heath at Park Pit (a former china clay pit), Bodmin Moor, VC2 East Cornwall, SX1966.7117, alt. 261m, December 2024. New to Cornwall.

N.G. Bacciu & J. McGill

Schismatomma ricasolii: a few small thalli on smooth trunk bark on *Fagus sylvatica* & *Fraxinus excelsior*, Llanina Woods, c. 1½ km east of New Quay, VC46 Cardiganshire, SN405.597, alt. c. 5m, February 2025. Samples consumed in conf. New hectad and the southwest-most location to date for the vice-county.

S.P. Chambers

Sclerococcum athallinum: on *Baeomyces rufus* which was on red sandstone by River Eden near Appleby-in-Westmorland, VC69 Westmorland, NY69530.17704, alt. 137m, February 2025. First record for VC69 and first UK record since 1994. Conf. B. Coppins.

P. Bisset, L. Bisset, C. Walker & C. Cant

Sclerococcum lobariellum: parasitising *Lobaria pulmonaria* at Trebartha, VC2 East Cornwall, SX2579.7751, alt. 158m, March 2025. Herb. Bacciu. New to Cornwall.

N.G. Bacciu & B. Benfield

Sclerococcum microsporum: on mossy north-side of *Corylus avellana* stem in streamside woodland, Dolgoed, north bank of the Afon Teifi c. ½ km southeast of Pontrhydfendigaid, VC46 Cardiganshire, SN736.662, alt. 180m, February 2025. Two apothecia detected, one collected and consumed in ident. Host inapparent. The second vice-county record.

S.P. Chambers

Solorina spongiosa Photo © C. Cant

Solorina spongiosa: in cracks of limestone outcrop at Nenthead lead mine, VC70 Cumberland, NY78505.43071, alt. 470m, April 2025. Conf. B. Coppins. First record for the vice-county since 1996.

C. Walker & C. Cant

Stenocybe nitida: on *Plagiochila punctata* on trunk of medium-sized *Quercus* in old woodland on steeply sloping north-northeast-facing hillside, Cwm Llyfnant, VC46 Cardiganshire, SN711.971, alt. 170m, February 2015, det. A. Orange. The first vice-county record.

S.P. Chambers

Stereocaulon vesuvianum var. *nodulosum*: buried in soil/moss at Cuttle Pool NR, previously a sand/gravel quarry, VC38 Warwickshire, SP201.753, alt. 110m, April 2024. Det. R. Yahr. First county record for this variety.

S. Gaskin & D. Napier

Stigmidium congestum: in apothecia of *Lecanorachlarotera*s. lat. on branch of *Populus tremula*, Aultgowrie woods, VC106, East Ross, NH4750, 70–100m, December 2024, specimen not retained. New to the vice-county.

B.J. Coppins & J.R. Douglass

Taeniolella cladinicola: lichenicolous on *Cladonia uncialis* subsp. *biuncialis*, in a pan in open wet heath (NVC: M16a), Holt Heath National Nature Reserve, VC9 Dorset, SU0638.0452, alt. 25m, September 2024. New to Dorset.

N.A. Sanderson

Taeniolella pertusariicola: lichenicolous on *Lepra pulvinata*, on an old *Quercus* by a river in pasture woodland, Mallard Wood, New Forest, VC11 South Hampshire, SU3133.0882, alt. 25m, October 2024. New to Hampshire; the recorder had long been aware of a distinct hyphomycete fungus occasionally infecting *Lepra pulvinata* (but not any other *Lepra* species) in the New Forest where the host is widespread and frequent, but its identity has only just been determined.

N.A. Sanderson

Taeniolella phaeophysiae: parasitising *Phaeophyscia orbicularis* on roadside ash trees at Ballinaboola, County Wexford, VCH12, S793.247, alt. 68m, August 2024. Second record for Ireland and first recent record.

M. Putnam & J. Skinner

Taeniolella punctata: parasitising *Allographa anomala* on a thick stem of *Hedera* in Draynes Wood SSSI, VC2 East Cornwall, SX2210.6859, alt. 185m, December 2024. Second site in Cornwall with this lichenicolous fungus.

N.G. Bacciu & J. McGill

Talpapellis beschiana: at two locations; a) parasitic on *Cladonia strepsilis* in open low productivity Short Heath (NVC: H4c), Bray's Cot, Goonhilly Downs SSSI, VC1 West Cornwall, SW7266.1826 & SW7277.1833, October 2024, alt. 80m, October 2024; b) on *Cladonia cervicornis*, on outcrop with Rock Heath (NVC: H7b) lower valley, Kynance, West Lizard SSSI, VC1 West Cornwall, SW6852.1363, alt. 45m, October 2024. New to Cornwall.

N.A. Sanderson

Talpapellis beschiana: parasitising *Cladonia strepsilis* in open humid heath (NVC: H2c), Fox Hill, White Moor, Lyndhurst, New Forest, VC11 South Hampshire, SU3147.0850, alt. 30m, November 2024. Herb. Sanderson 3078. New to Hampshire. N.A. Sanderson

Telogalla olivieri: on *Xanthoria parietina*, Broad Walk, Kew Gardens, VC17 Surrey, TQ186.774, alt. 10m, January 2025. Coll. No. FH39, Accession No. K-M001444449. New to vice-county.

F. Harrigan

Teloschistes chrysophthalmos var. *chrysophthalmos*: solitary mature tuft, c. 2 × 2 cm, with numerous apothecia, on end of branch of *Crataegus monogyna* on remnant hedgebank on south-facing side of upland valley, Banc Allt Fedw, c. 1½ km southeast of Pisgah, VC46 Cardiganshire, SN690.770, alt. 240m, January 2025. Field record supported by digital photographs. The third vice-county record and the first on *C. monogyna*.

S.P. Chambers

Thelidium pluvium: on stones in shaded stream in old woodland, Cwm Llyfnant, VC46 Cardiganshire, SN718.975, alt. 30m, February 2015, det. A. Orange. The second vice-county record.

S.P. Chambers

Thelocarpon coccosporum: growing on a cyanobacterial crust on a weathered sandstone plinth with an urn at Knightshayes Court National Trust, Tiverton, VC4 North Devon, SS9611.1509, alt. 148m, April 2025. Second record for England and new to Devon.

N.G. Bacciu & J. McGill

Toniniopsis inornata: on acid-rock pebble in damp north-facing area below the waterfall at Lodore Falls, Borrowdale, VC70 Cumberland, NY2651.187, alt. 109m. September 2024. First for England and fifth UK record, first since 1981. Conf. B. Coppins.

C. Walker et al., Cumbria Lichen and Bryophyte Group meet

Tremella coppinsii: parasitising *Platismatia glauca* on a fallen *Quercus* branch in Cwm Marlais, Brechfa Forest, VC44 Carmarthenshire, SN5141.3269, alt. 140m, November 2024. New to the vice-county.

N.G. Bacciu & J. McGill

Unguiculariopsis lettaui: on *Evernia prunastri* on cut branch of old pear (*Pyrus communis*) in garden, Glendarroch, Gleannan Salach, Assynt, VC108 West Sutherland, NC0854.2342, alt. 60m, February 2025, leg. I.M. Evans & G.M. Richards, specimen not retained, det. B.J. Coppins. New to vice-county.

B.J. Coppins

Usnea cornuta s. str.: on trunk of an approx. 50-year old *Crataegus monogyna* in hedge between garden and derelict herb farm, Cholesbury, VC24 Buckinghamshire, SP9320.0738, alt. 198m, October 2021. Specimen retained. Conf. P. Clerc using TLC. New to VC24.

I. Clark

Usnea esperantiana: two specimens on different trees, 20cm diam. limb of approx 100-year old *Quercus* trees (felled) on Common, Cholesbury, VC24 Buckinghamshire, SP9350.0709, alt. 175m, January 2025. Specimen retained. Det. I.

Clark, Conf. R. Yahr. New to VC24.

I. Clark

Usnea fragilescens: on trunk of an approx. 50-year old *Crataegus monogyna* in hedge between garden and derelict herb farm, Cholesbury, VC24 Buckinghamshire, SP9320.0738, alt. 198m, October 2021. Specimen retained. Conf. P. Clerc using TLC. New to VC24.

I. Clark

Usnea wasmuthii: on twigs of approx. 50-year old *Crataegus* trees in degenerate hedge between Common and unimproved paddock, Cholesbury, VC24 Buckinghamshire, SP9340.0738, alt. 172m, October 2023. Also SP9423.0690, May 2022 and SP9416.0648, February 2025. Specimens retained. One conf. P. Clerc. using TLC, others det. I Clark. New to VC24.

I. Clark

Verrucaria ochrostoma: abundant on dry, crumbly mortar on south-southwest-facing chapel wall under wide, rain-shadowing roof eave, Rhydfendigaid Calvanistic Methodist chapel, Pontrhydfendigaid, VC46 Cardiganshire, SN730.666, alt. 180m, February 2025. Herb. SPC. In enormous quantity, the largest population to-date in the vice-county and possibly in Wales.

S.P. Chambers

Verrucaria romeana: on gently sloping top of slightly nutrient-enriched large siliceous boulder beside track by artificial pool in wet streamside valley woodland, below Coed Allt Ffos-colic, c. 2 km southwest of Cardigan, VC46 Cardiganshire, SN166.438, alt. 55m, February 2025. Field record. The first vice-county record.

S.P. Chambers

Vouauxiella lichenicola: on *Lecanora hypocarpa*, on *Betula* twig, rural roadside, Kineton, Pittern Hill, VC38 Warwickshire, SP326.517, alt. 120m, June 2024. First county record.

D. Napier

Vouauxiella verrucosa: licheni-colous fungus with dark verrucose conidia on *Lecanora horiza*, on a calcareous ironstone headstone in St. Peter's churchyard, Kineton, VC38 Warwickshire, SP335.510, alt. 70m, January 2025. First county record.

D. Napier

Xanthoparmelia perrugata: on south-southeast-facing igneous crag, Clogwyn yr Adar, c. 1 km west-southwest of Blaenau Dolwyddelan, VC49 Caernarfonshire, SH692.516, alt. 260m, June 2009. Herb. SPC. Divaricatic acid (major) by TLC (A. Orange, 12/2010). The first vice-county record.

S.P. Chambers

Xenonectriella streimannii: on thallus of *Sticta ciliata*, Park Pit, nr. Colliford Lakes, Bodmin, VC2 E Cornwall, SX1881.7114, December 2024, leg. N. Bacciu, det. P.F. Cannon. Apparently new to England. A further specimen from the same host from Wales (Brechfa Forest, Carmarthen), SN5124.3290, January 2025, leg. N. Bacciu, could be identified as *X. streimannii* but is more likely to be an undescribed species.

P.F. Cannon & N. Bacciu

Xenonectriella streimannii: parasitising *Sticta ciliata* on a veteran *Corylus* in Draynes Wood SSSI, VC2 East Cornwall, SX2252.6882, alt. 224m, December 2024. Herb: K. Conf. P. Cannon. New to England.

N.G. Bacciu & J. McGill

Xerotrema quercicola: on decaying lignum on upright length of dead, decorticate *Quercus* trunk propped up against a living tree in humid old woodland on north-facing slope, Coed Fedw Fach above the Afon Cymerau between Cymerau & Brwyno, c. 11/2 km east-northeast of Eglwys Fach, VC46 Cardiganshire, SN703.962, alt. 130m, March 2025. Herb. SPC. The second vice-county record.

S.P. Chambers & J.C.E. Hope

Zyzygomyces aipoliae: on thallus of *Physcia aipolia* on oak, Wren Crag, Thirlmere, VC70 Cumberland, NY361.197, 280m. Conf. B. Coppins, New to the vice-county and northern England.

P. Bisset, C. Walker & C. Cant

Zyzygomyces bachmannii: on *Cladonia furcata* in heath amongst low basaltic outcrops on Norman's Law, VC85 Fife, NO308.201, alt. 220m, April 2025, field record, FLAG excursion. New to vice-county.

B.J. Coppins

Minutes of the ANNUAL GENERAL MEETING

11th January 2025 at the Flett Lecture Theatre, Natural History Museum, London
Hybrid meeting with some members online via Zoom

Welcome by the Chair of Trustees Andy Cross who then introduced the President Fay Newbery.

Members Present: Margaret Chapman; Andy Cross; Paul Cannon; Chris Ellis; Simon King; Fay Newbery; Maxine Putnam; Neil Sanderson; John Skinner; Eluned Smith; Mary Steer; April Windle; Duncan Wright; William Ole Purvis; Nicholas Carter; Olivia Gray; Peter Bisset; Peter Crittenden; Quiling Xu; Rhina Duque-Thais; Richard Todd; Rolf Gademann; Rowan Wolf; Sarah Pietsch; Sascha Hansen; Silke Werth; Simeon Elliott; Snezhina Popova; Susan Benbow; Sylvia Davidson; Alan Green; Tamsin Green; Terry Hackwill; Theo Llewelyn; Timothy Brown; Vanessa Winchester; Vince Giavarini; Juliet Anderson; Pat Wolseley; Alexa Price; Alice Motola; Amanda Waterfield; Andrea

Goss; Anthony Speca; Barbara Hilton; Cassandra Li; Cassie Laughlin; Catherine Glennie; Daisy Baggs; David Hill; David Lonsdale; David Richardson; Emry Benbow; Eric Steer; Hana MacKenzie; Holger Thüs; Isobel Clark; Jacq Lavender; James Paton; Jenny Craig; Jo Kruk; Josef Halda; Judith Allinson; Juliet Bailey; Lesley Fidler; Mark Stephens; Martin Butler; Mohammed Sohrabi; Nathan Chrismas, Lindsay Mahon.

By Zoom: Muhammad Usman; Les Knight; Sue Knight; Brian Coppins; Janet Simkin; Paul Whelan; Ann Claypole; Fiona S; Craig Postlethwaite; Bryan Edwards; Janet Brinklow; Richard Brinklow; Di Napier; Andy Acton; Pamela N. Olivares; Caz Walker; A Clark; Buddhika Weerakoon; Sue Thomas; Andrea Britton; Kaare Homble; Christian Vonarburg; Philippe Jumeau; David Ogden; John Larman; Caroline Collingridge; Pam Muir; Peter Martin; Rebecca Yahr; Andy Watson; Christina Campbell; Miranda Hobson; Andrea Holden; María José Chesa; Raymond Griffiths; Allan Pentecost.

Apologies: Ken Sandell; Mark Seaward; Steve Price; Graham Boswell; Amy Hookway; Graham House; Theresa Greenaway.

The Minutes of the Annual General Meeting held at the University of Nottingham on the 20th January 2024 were published in the Summer Bulletin 2024 volume 134. There were no comments or corrections.

Matters arising: The vacant position of acting Vice-President was filled by Mary Steer in February 2024, by unanimous decision of the BLS Council.

The President's Report – Fay Newbery

There has been a huge amount happening in the British Lichen Society over the past year. You will be able to hear about that in the Officers' Reports.

We are a relatively small society that always seems to achieve a huge amount. I have often heard it said that we punch above our weight. This happens because so many of you actively engage with lichens. Amongst you are people who: record lichens; engage with people who wonder whatever it is you are peering at on that wall or tree; get involved with local lichen groups as organisers or attendees; attend or teach Lichens for Absolute Beginners groups or post-Labs groups or lichen courses; give talks or lead lichen days for local organisations such as nature reserves, schools, natural history groups, U3A etc.

Some of you teach on lichen courses for the BLS, FSC and other organisations; help others with ID in person, in local groups, or on social media; celebrate lichens through photography, art, or writing; help with BLS organisation and administration, especially people who take on responsibility for smaller tasks such as keeping our Events page up to date or the member who receives photographs from you for our Photo Competition, for which we have a very good entry this year. So much so, that the judges awarded two equal first prizes!

During this past year we had an increase in the number of people coming forward to act as local organisers or helpers on field trips or on in-person courses. It is great if you enjoy lichens for their own sake, but as soon as you reach out beyond yourself, you

can do so much more. And whether you are a BLS member or not, you help to achieve the BLS aims of promoting and conserving lichens every time you do something as simple as share a photo of a beautiful lichen or tell us that *Xanthoria parietina* grows in your local churchyard. So, please continue doing what you do. Get involved with other aspects of lichenology, in the broadest sense, if it will give you joy. You will never know how many people you will affect.

Thank you to everyone.

At this point of the AGM, we also like to recognise and acknowledge the members who made contributions to lichenology who passed away during the previous year.

In 2024 we have heard of the loss of Simon Davey in January and Trevor Duke in April. We thank them for their involvement with lichens and the Society and send condolences to their families.

Reports of Officers and Committee Chairs

Treasurer – Duncan Wright

The President thanked Duncan for his informative two-page summary which has been emailed to all members. Duncan said that it was his responsibility and pleasure to present the accounts of our increasingly healthy Society. He pointed out that the membership year and financial year are different. The full Annual Report and Accounts for the year ending 30th June 2024 were approved in September 2024 and are available upon request to the Treasurer or can be viewed on the Charity Commission website. Duncan explained that the first page of the summary covers income and expenditure during 2024. The excess of income over expenditure has doubled to £41,000. This is due both to our use of the Flagstone Platform which will have yielded £25,000+ by the end of June 2025, and the increased activity of Field meetings and courses. Income and expenditure on our successful academic journal, the *Lichenologist* remains steady. The second page describes our assets, with our total funds now standing at £713,092, an increase of £41,115 compared with 2023. There is some concern that these reserves are rather high, and this issue is being addressed by the Finance Committee and Trustees. The accountants are keeping the fee structure and helpful team the same despite a name change to T. C. Bromhead and Duncan recommends that they continue providing expert oversight of our financial affairs.

Membership – Duncan Wright

Duncan reported a welcome increase in membership from 674 to 691 of whom two thirds are based in the UK. There are now seven countries with 10+ members. Pat Wolseley proposed that the accounts be accepted, seconded by Neil Sanderson and there was unanimous approval from the membership, seven of whom voted online. Duncan thanked Janet Simkin for her careful checking of outgoing payments and to Eluned Smith for selling posters and books. Of the 1,000 Dobson Field Guides printed in March 2023 and 2024, only 261 remain. Finally, after expressing gratitude to the

Finance Committee, Duncan was thanked by the President and warmly applauded from the floor.

Conservation Committee – *Bryan Edwards and Neil Sanderson*

This Committee continues to be organised mainly online, and any members with an interest in conservation who would like to help are welcome to be included on the email list. This year, the new Grant for Ecological or Conservation Research & Survey on Lichens administered by the conservation officers has had one project approved which is nearly complete. If you have ideas for research and fieldwork on notable or threatened lichens and their habitats, please have a look at the website for details and apply.

Work continues to be dominated by consultations and advice. Members of the committee have represented the BLS in several large projects and we have a policy of responding to planning applications that potentially have an impact on nationally important lichen sites. These projects include the Alliance for Scotland's Rainforest and the South West Rainforest Alliance where we are being successful in advocating for lichens, in particular for their needs to be fully accounted for in conservation management and restoration. We are also represented on the Beaver Reintroduction to Strath Spey project in the Beaver Lichen, Bryophyte and Fungi Group, which is at least facilitating communication between the interested parties.

We have also given advice and information to the potentially important Local Nature Recovery Strategies in England being written at a county level now, aiming to get lichens included in a useful way.

Neil reported that they have responded to two planning applications impacting on nationally important lichen sites. In Scotland the second application to construct a golf course on the exceptionally lichen rich dunes of Coul Links went to a planning inquiry. The BLS objected, as it did for the first enquiry, as part of the Not Coul campaign group. Chris Ellis ably stepped into Brian Coppins's place and presented our case against this application. Great thanks are due to him for this. The British Lichen Society Closing Statement presented to the inquiry can be viewed on the BLS website. The final decision by ministers is expected in February 2025.

In Wales the application for a bike park at Nant Y Bai Forest, Carmarthenshire, which will impact on the Mwyngloddia Nantymwyn SSSI, notified for its nationally important metallophyte lichen assemblages, was submitted as a full planning application. The BLS commissioned the ecological consultants, Ecological Planning and Research, to undertake a review of the application and, based on the results of their comprehensive assessment, objected to the proposal as damaging to the lichen interest of the SSSI. This objection and review can be viewed on the BLS website.

In addition, three members of Committee are currently working as assessors for the new Lichen Red List and we hope to have a draft for editing by March. This would not be possible without the BLS data supplied by Janet Simkin and collected by generations of lichenologists.

Next year, in addition to responsive work, we hope to find more time to develop

the website resources and work is planned for a Planning and Assessment section to provide advice to ecological consultants in dealing with lichens in planning applications and environmental impact assessments. Also we would like to promote lichen conservation on heathlands, moorlands and bogs, especially in the uplands, where there are increasing threats, including from well-meaning conservation measures by other bodies too.

Thanks are due all members who have helped the Conservation Officers, with a special mention to April Windle and Andy Acton.

Education and Promotions Committee – *April Windle*

The successful and enjoyable Lichen Chat and Improvement Group (LCIG) sessions continue to be delivered and co-ordinated twice a month (with reduced sessions over the summer) by Judith Allinson. She reports that there are 180 people on the emailing list, with between 16 and 30 attendees at each session.

The fifth year of Lichens for Absolute Beginners (LABS) continue to be coordinated by Mark Stephens and Sue Knight with dozens of participants. Some of these groups have now transitioned to self-study groups and are led by participants who are gaining in confidence with their increasing lichenological expertise. Further LEAF courses are planned for 2025.

The two most advanced courses in 2024 were the Aquatic Lichens Course in Cumbria led by John Douglass, Holger Thüs and Andy Acton, which was attended by 12 people and the Graphidaceae Workshop led by Gothamie Weerakoon and Pat Wolseley which attracted six participants at the NHM in July. April asked the membership if anyone could offer more advanced courses or workshops this coming year and in the future.

She reported that the EPC are still in desperate need for someone to take on the management of our social media pages, or at least to help her, Nathan Chrismas and Rebecca Yahr. During 2024, there has been very little time spent creating or delivering content. Engagement will increase if we can find a helpful member or two to take this on. Twitter X has some 6050 followers, Facebook some 3073 followers and YouTube about 303 subscribers.

The profile of the BLS has risen with several short videos filmed in May 2024 for the Woodland Trust. These inform woodland managers about the importance of conserving lichens, and their lichen chemistry, and may have been watched by up to 80,000 subscribers on YouTube and up to 10,000 Instagram subscribers. April described a recent Countrystride podcast on the Lichens of the Temperate Rainforests of Cumbria, which may have reached hundreds of people, particularly those who live in and enjoy the Borrowdale area. Nathan has written an article on alpine lichens for the Alpine Club which describes how many high-altitude species often 'hide in plain sight'. He is also involved in a five-part series linking experiences of climbers, mountain leaders and hill walkers with nature and geology.

The BLS continues to support the Scottish Rainforest Alliance as and when required but has been much busier this year with the South West Rainforest Alliance. This

involved representing the BLS at various meetings, mapping and adding to lichen documentation.

BLS volunteers attended the Temperate Rainforest Futures Conference in September and the BLS led a walk for international delegates, resulting in a press release with April leading the communications side and Neil Sanderson leading the conservation element.

Finally, April is pleased that the new London Lichen Group is doing well, and she thanked the inspiring group of people who help with educating and promoting lichens to a wide spectrum of the public. She thanked Maxine Putnam in particular for her services to the EPC as Maxine is standing down from a major role on the committee but will still be acting as part of the Learning Pathways Group and be available on a consultative basis to help with the wide-ranging activities of EPC.

David Richardson asked whether the Field Studies Council was still running residential lichen courses. April replied that both she and Pat Wolseley had taught several during the year. The FSC has been very slow to resume residential courses at its field centres, and even sadly closed those at both Kindrogan and Malham Tarn after the Covid epidemic. However, they are now running more courses, for which the BLS can sometimes offer grants for attendance; Judith Allinson recommends that people wanting to attend residential rather than day-courses in natural history keep asking the FSC for them. The President thanked April and the EPC for her report.

Grants Committee Report – Mary Steer

Over the course of the year since the last AGM the Grants Committee has offered a total of seven grants, six of them for travel to training courses and the summer meeting. One grant has been offered under the Overseas Travel grant.

The web page on Grants has been updated during the year and is now live. There is a new grant available called 'The Small Groups Training Grant.' This is aimed at local groups either via tutor-led or self-help projects. Attendees will be expected to contribute to the costs when booking on any possible event. Sue Knight, chair of the Learning Pathways Group, has offered to discuss concepts and ideas before applications are submitted for which Mary thanks her.

Because there have been two meritorious applications for the Peter James Award, it has been decided to award Erik Moller and Mohammed Sohrabi £5,000 each to undertake their lichenological research.

Mary thanked the members of the Grants Committee, particularly Peter Crittenden, for their advice and comments when dealing with grant applications and guidelines.

Data Committee Report – Mary Steer

The main focus of the three meetings held in 2024 has been how to increase the number of saxicolous churchyard lichen records which come to the BLS database. As a result, a small subgroup of the Data Committee is working towards producing a range of resources to help members undertake churchyard recording. It has been noted that churchyards are a difficult habitat for beginners but the subgroup feel that it will be

possible to include beginners in the project. As Janet Simkin has stated all records are important and even beginners can contribute to the database by submitting records of common lichens, thereby maintaining a good coverage of records across Britain. It is hoped that these churchyard resources will be available in advance of Caring for God's Acre annual 'Love your burial ground week' which is in June 2025.

The BLS has kindly been given the copyright for the three Dobson Field Guides by Frank Dobson's daughter, Sue Davie, to whom our thanks are noted. These Guides will be made available on the website in due course but they will be in their original form with no name changes. However, there will be an accompanying document for each Guide, which will detail the name changes which have occurred since they were originally published. Mary thanked Brian Coppins for this work.

Update on the progress of LGBI3 – Paul Cannon

Six volumes have been published on the website since the 2024 AGM; these are Umbilicariales (published 19 Feb., 24 pages); Lecideales (10 April, 51 pages); Rhizocarpales (13 July, 30 pages); Miscellaneous Lecanorales (13 Sept., 23 pages); Teloschistales (7 Nov., 75 pages) and Lichinales (8 Nov., 26 pages).

The total page count to date is 1,351 (up from 1,122 in Jan. 2024).

There are now 389 genera described (up from 298 in Jan. 2024) comprising 1,865 species (1,535 in Jan. 2024). To finish the project, Paul says that about 2,700 species (including over 600 lichenicolous fungi) need to be edited and uploaded.

He states that the editorial board still have to do:

Vol. 45: Collemopsidiales (incl. *Collemopsidium*, *Zwackhiomyces*): 5 genera, 26 species

Vol. 46: Lecanorales: Stereocaulaceae (inc. *Lepraria*, *Stereocaulon*): 4 genera, 42 species

Vol. 47: Hymeneliales: Hymeneliaceae (*Hymenelia*, *Ionaspis*, *Tremolecia*): 3 genera, 11 species

Vol. 48: Coniocybales (*Chaenothecula* etc.): 2 genera, 16 species

Vol. 49: Mycocaliciales (*Chaenothecopsis* etc.): 5 genera, 24 species

Vol. 50: Remainder of Peltigerales (*Coccocarpia*, *Massalongiaceae*, *Placynthiaceae*): 3 genera, 20 species

Vol. 51: Remainder of Pertusariales (*Coccotrema*, *Icmadophila*, *Microcaliciaceae*): 7 genera, 9 species

Vol. 52: Thelocarpales (*Sarcosagium*, *Thelocarpon*): 2 genera, 15 species

Vol. 53: everything else lichenized!

Most will be straightforward as there have not been many changes since LGBI2.

In addition revisions are needed for several accounts, including Lecanoraceae, Parmeliaceae and Physciaceae (probably several others too). This will be an ongoing task...! Paul says that the final major task will be a revision of the generic keys, which is a major operation, hopefully taking place sometime in 2025, now that the generic structure is more or less finalized.

The production of a printed version is still in question, due to the need for continuing

revision. It would be technically fairly simple, but I think we would need the services of a professional production editor to oversee typesetting and ensure consistency over the whole volume (or volumes). The format might need to be revisited, new maps generated, new accounts written for exclusively lichenicolous families etc.

Paul thanked the members of the Data Committee who give their time to attend the various committee meetings and who provided lively discussions on issues raised. Finally, he expressed his personal thanks and those of the BLS to Janet Simkin and Brian Coppins for their continued and expert work in maintaining the BLS Database.

The President thanked Paul Cannon and the editorial board of LGBI3 for all their hard work in bringing this project slowly towards a conclusion.

Bulletin Editor – Maxine Putnam

This last year saw the publication of two issues of the Bulletin which were well received but Maxine would like to encourage more people to make contributions if you possibly can. She was pleased to receive 14 articles for the Summer Bulletin and 15 for the Winter one in addition to diverse other items of literary and artistic merit, and regrettably some obituaries.

After much reflection she announced that she will be stepping down as Editor in a year's time when she will have handled a total of 17 issues. She reported that it had been a rewarding and enjoyable experience with challenges but also moments of pride.

The decision to hand the role on to a successor had not been made lightly but she feels the time is right and would dearly like to have more time to work on teaching, fieldwork and microscopy before it's too late for her. So, during 2025 we shall be looking for a new Bulletin Editor and meanwhile she would like a couple of volunteers to;

- ◆ proofread the final edited draft
- ◆ steer it through the printing and mailing stages

The President thanked Maxine for her hard work in editing our very interesting Bulletin and she was warmly applauded from the floor by the members.

Senior Editor – The Lichenologist – Chris Ellis

Chris presented a report on progress and annual highlights and confirmed that the production of the *Lichenologist* was up to speed again following technical disruption at Cambridge University Press last summer. Despite this we managed to complete a Special Issue dedicated to Teuvo Ahti in time for his 80th Birthday, in the September Issue. In 2024, 400 pages of content were published; this represented 2 Reviews, 30 Standard Papers, of which 50% were published Open Access, and one book review. Authors were represented across 36 countries from all the continents except Antarctica. Chris reported that the Editorial Board had been enhanced with three lichenologists from Thailand, Italy and Sweden.

With help from CUP, we will be organising online Editorial Board meetings in 2025, to engage Associate Editors in the future development of the Journal, with efforts

to maintain its standing in a very competitive publishing landscape. This is likely to include ideas for future Special Issue topics, and Council and members are invited to make suggestions for Special Issues that they might like to see represented, by emailing Chris Ellis.

The President thanked Chris, Leena and the Editorial board and was warmly received by the members.

Website Editor – Janet Simkin

The database continues to work well and the President thanked Janet and Brian Coppins for continuing to manage it. She stated that the two-millionth dated and geo-referenced record has just been added. We now also have 654,000 hectad summary records from the Mapping Scheme and LichenIreland which can be included in maps.

	General	Churchyards	Total
England	837,950	501,450	1,339,400
Scotland	542,722		542,722
Wales	173,023	17,044	190,067
IoM	7,642	1,711	9,353
C. Isles	7,805		7,805
	1,569,142	520,205	2,089,347

More than 80,000 records have been added during 2024, the largest total by far being for VC72 (9,687), followed by VCs 48, 11, 69 and 96.

	General	Churchyards	Total
England	35,342	6,083	41,425
Scotland	26,413		26,413
Wales	11,722	947	12,669
IoM	18		18
	73,495	7,030	80,525

Records have been sent in by around 50 recorders for England and Wales, and by others for Scotland, a welcome increase over recent years. The most prolific this year were Ranald Lamb, Neil Sanderson and Nicola Bacci. Well done to them! The taxa most often recorded were, not surprisingly, *Xanthoria parietina*, *Parmelia sulcata* and *Physcia tenella*. The number of records for *Thelotrema lepadinum* (619, compared to 1,348 for *X. parietina*), *Normandina pulchella* (556) and *Lobaria pulmonaria* (520) does suggest that there is still a certain (and understandable) "hotspot" bias in our recording.

Work on LGBI3 and the Red List has led to a lot of data cleaning, taxon dictionary changes and the redetermination of records, and producing maps and responding to data requests often highlights further issues that have to be resolved. All this takes up a lot of time but overall, the database is now in much better shape than it was a few years ago.

Requests for maps and data have increased again this year, most of them easy to provide but some quite large and needing interpretation. Spreadsheets of records for a site or VC can now include a summary species list with taxon group and conservation status, to help the user.

The latest version of the input spreadsheet is now 7.16, and this includes taxon names and synonyms up to November 2024. A new feature is a drop-down list of species names to make them easier to type in.

Brian Coppins has kept the online taxon dictionary up to date with all the many name changes, and this links to the species pages. We now have a page and hectad map for every species for which we have records, and many of the pages also have text and photos. The interactive map is proving to be very useful and it as well as other maps will be updated in the next few days.

The lists of surveys and churchyard visits on the downloads page have also been updated, as have the VC and country checklists.

This is the 25th anniversary of the AGM meeting where Janet was persuaded to take on the database, and we have come a long way since then. Next year the usual work of imports, revisions, mapping and data requests will continue, but as the demand for our data continues to increase we also hope to be able to address some long-standing gaps.

Until now records for Ireland have been databased by the LichenIreland project, with only hectad summary records being shared with us for inclusion in our static maps. We need to have access to the full data and we will soon be adding Irish records to our database, and anyone with Irish data (however old) is asked to send it in using our spreadsheet. As always, we can cope with any issues of confidentiality or restricted access but please make these clear when submitting the data.

We have been unable to import Channel Isles records for some time due to a technical problem, and so far all attempts to resolve this have failed. We may have to pay someone to sort this out.

Casual recorders often assume that records they submit to iRecord will find their way to us, but they do not because we have never had the resources to verify and prepare them for import. That is still the case so instead we plan to import the records just as they are to a separate area of our database where we will have access to them and can pick out any that might be of interest. Help with verification is always welcome if anyone feels that this would be a good use of their time.

The long-term project to replace Recorder6 with an online system was making good progress but is now currently held up by national politics and funding issues, which may be resolved this Spring.

Field Meetings – *Graham Boswell*

The usual four field meetings took place in 2024, in addition to many local meeting and training events reported elsewhere. In February the winter workshop was held at Cober Hill, followed by the Spring Meeting to the Isle of Arran in April. The Summer Meeting took place in Catalonia and the Autumn meeting was held at the Dundreggan Rewilding Centre in Scotland.

The Winter Workshop (February 22 to 25th) was held at Cober Hill Hall near Scarborough. It was successfully run by Brian Coppins and Neil Sanderson who steered 19 enthusiastic participants through their lichenological problems. The meeting was on a full-board basis in single and twin rooms and included an excellent microscope area and meeting space. An optional field day was organised by Wendy English and Dave Minter from Whitby Naturalists; this joint meeting has been a feature of the Cober Hill event for the past 5 years.

Spring Meeting (April 13 to 17th) this was the largest meeting of the year with 31 participants, and possibly one of the largest field meetings ever held by the BLS. Most of the group stayed at Arran Lodge in Lamlash, a self-catering hostel; six participants stayed off-site. The local organisers were Margaret Chapman and Alison Adams, who spent a considerable amount of time organising the sites given that Arran is an island location. These sites ranged from seashore to the highest point of the island, Goat Fell. We were joined by two Post Doctoral researchers from a German University working on cyanolichens who were fortunate in finding both morphs of *Sticta canariensis*.

Summer Meeting (July 28 to August 4th) Catalonia. Fourteen members attended the meeting, half of whom lived outside the UK. For Sean Beeching from the USA it was his first time to Europe. Other participants lived in France, Germany and of course Catalonia. Our venue was the Hostel del Senglar in the small town of Espluga del Francoli in the Prades Mountains. The venue was outstanding value for money. The logistical organisation was undertaken by Maria Jose Chesa who is also an excellent lichenologist. Maria knew we might struggle with the heat, hence, she had us up at the 'crack of dawn' and arranged for us to be in shade or at high altitude during the heat of the day. Antonio Gomez from University of Barcelona was our lichen supremo; he along with Maria organised a wide range of sites and communities. They were assisted by local geologist Merce Cartanya who usefully informed us about the landscape features and rock types.

Autumn Meeting (12 to 18th October) Dundreggan Rewilding Centre Scotland. The local organiser for this meeting was Maddie Geddes-Barton, who on agreeing to undertake the role did not realise she was pregnant. Five weeks prior to the meeting Maddie and Jack became the proud parents of Maud who joined us for one day of the meeting, I think our youngest participant ever! Twenty-three people attended the meeting; most people stayed on site, on a part-board basis enjoying the new facilities of this sustainable initiative. The Scottish weather held good allowing us to do justice to all the sites organised by Maddie.

2025 Meetings Programme

Winter Workshop (21 to 24th February 2025) FSC Preston Montford with optional field visit to Walcot Wood. The workshop tutors are Brian Coppins, Neil Sanderson and John Douglass. Nineteen people are booked on this useful meeting.

Spring Meeting (12 to 19th April 2025) Plas Caedeon near Dolgellau. Local organiser Raymond Griffiths has sourced a wide range of sites including woodland, mine sites, uplands and lakes. The accommodation is fully catered with a few self-catering options.

Summer Meeting (14 to 18th July 2025) Isle of Man. This meeting is hosted by the Manx Wildlife Trust who are providing full-board accommodation and transport. The Trust has arranged accommodation at King William College, Castletown. A wide range of sites is suggested by the Trust.

Autumn Meeting (Date to be decided) West Yorkshire (most likely Hebden Bridge). There has not been a field meeting in this area for 50 years. The meeting is in preparation by a local team.

Meetings under consideration/development for 2026.

Eden Vale. The local leader is Pete Martin

Worcestershire. The local leader is Eluned Smith

Sutherland. Local leader awaiting confirmation.

I am hugely grateful to all those who have acted as local organisers. If you are willing to become a local organiser of a meeting please get in touch with me. The most important role of a local organiser is to source sites and gain permissions.

Archivist – presented by David Richardson on behalf of Mark Seaward

The bulk of the archives is now held at the Royal Botanic Garden in Edinburgh. Mark's own archives have provided a useful resource not only for British and Irish lichenologists (and indeed non-lichenologists) over the past year but also for numerous lichenologists worldwide. Mostly these have been in respect of those in need of biographical and bibliographical material for tributes to both the living and, also sadly, the dead. Interest has also been shown by several researchers in the role of women in lichenology. Most of Mark's correspondence is via e-mail, but visitors, albeit less frequent than in previous years, to view lichen archives in his home and Bradford University, are welcome. Mark trusts that as well as the BLS archives, his personal resources will find a suitable home in due course; he has, for example, more than 18,000 reprints in boxes (occupying more than 31 metres of shelving) and his library, from a lichenological point of view, is probably one of the best in England.

Librarian – Theresa Greenaway

Theresa reported very little activity following the removal of duplicated reprints and books from the overcrowded Library shelves in early 2024. A request from a BLS

member for a copy of an article in a 1980s edition of the *Lichenologist* was scanned and emailed; a new BLS member asked to borrow a copy of Dobson which unfortunately was not in the Library. Eluned is sending Theresa a new copy of Baron, a new Somerset Lichens and LFs, an *Usnea* Aide Memoire, facsimile copies of Acharius and Turner & Borrer, a new Dobson and some lichen leaflets in January 2025 for our otherwise well-stocked shelves.

Herbarium Curator – Richard Brinklow

The Society's Herbarium has had quite a busy year, with more loans than usual. This has partly been as a result of a short talk I gave to the Lichen Chat and Improvement Group, which encouraged more recent members to request loans. Specimens have also been loaned for use at the Freshwater Lichen Workshop and used by the Tayside Lichen Group.

I would like to remind members that they are welcome to borrow specimens from the Herbarium. Although not comprehensive, it does contain about 800 taxa of British Lichens. A rough list of contents can be found on the BLS website. Specimens (preferably in batches of not more than 20) can be borrowed by post by emailing requests to the Curator (herbarium@britishlichensoociety.org.uk). There is currently no need to refund the outward postage, so paying for the return postage of a loan is the only cost involved to members of the Society.

Only a few new specimens have been added in the last year and as most of the specimens are now more than 50 years old they might be considered to have mainly historical significance. So, adding a significant number of fresh specimens would be desirable if the collection is to remain useful for comparison with freshly collected material.

Although fresh specimens would be most welcome, they do need to be of a certain size and quality (not tiny scraps collected just to confirm identification) but still collected fully in accordance with the constraints of responsible conservation.

Gothamie also made a request for clean, dry lichen samples to be sent to her at the Natural History Museum, to be curated by her and her team, where they will join her 3,000+ samples of lichens and lichenicolous fungi. She pointed out that while you do not need a permit to collect and send her samples from your own property, you do need a permit from either Natural England or your local Council if you collect and send her any lichen samples from outside your property.

The President thanked Richard for his report and suggested that members start collecting samples from their own gardens for Gothamie's collection at the NHM.

Election of Officers and Trustees – Fay Newbery

The re-election of Officers *en-bloc* was proposed by Peter Crittenden, seconded by Pat Wolseley and approved by the majority of members in the room and online. This confirmed Mary Steer's appointment as Vice-President and as Chair of the Data Committee. The posts of Web Editor and Membership Secretary remain vacant.

Andy Cross, Paul Cannon and Rebecca Yahr retired as Trustees. Paul has served as a Trustee since before the BLS became a CIO and Fay thanked him for his eighteen years of service as a Trustee and are glad that he is willing to continue as a member of Council in his capacity as Chief Editor of LGBI3. Andy Cross and Rebecca Yahr are willing to stand for re-election. There are no other candidates.

The 23 Officers and Trustees of the BLS Council now comprise: Duncan Wright; Janet Simkin; Maxine Putnam; John Skinner; Richard Brinklow; Paul Cannon; April Windle; Andy Cross, Neil Sanderson; Mark Seaward; Rebecca Yahr; Christopher Ellis; Margaret Chapman; Fay Newbery; Mary Steer; Caz Walker; Paul Whelan; Theresa Greenaway; Graham Boswell; Simon King; Ann Claypole; Raymond Griffiths and Eluned Smith.

Re-election of these Trustees and Officers was proposed by Mary Steer, seconded by Duncan Wright and the motion was carried by the members, followed by warm applause from the room at the end of the meeting.

Date and Place of AGM 2025

These are yet to be confirmed.

Publications

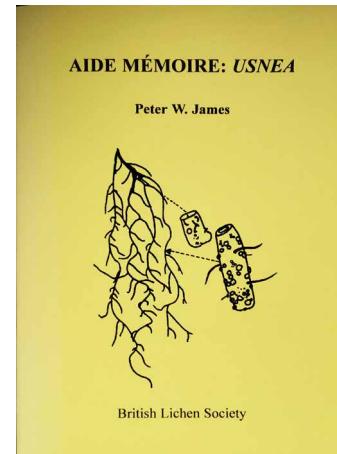
How to purchase an item:

1. Email Eluned at ehsbiol@gmail.com to inform her of what you wish to buy and the address for delivery. You should receive a confirmatory email.
2. Payment

There are two options:

- Bank transfer to British Lichen Society, sort code 40-52-40, account no. 00012363 (Label your payment 'pub purchase')
- By cheque, payable to 'British Lichen Society' (not 'BLS'), sent to E.H. Smith BLS, Tutnall House, Claines Lane, Worcester, WR3 7RN

Postage costs have risen slightly again. Please email Eluned for P&P costs as many orders have multiple books, weigh and therefore cost differently, so one price does not fit all. P&P will be kept as low as possible.

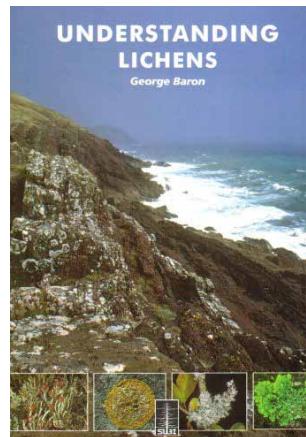


Somerset Lichens and Lichenicolous Fungi

P.A. Wolseley, B.J. Coppins and A.M. Coppins

An up-to-date county lichen flora, packed with interesting notes and observations.

£5.00. Email for P&P.



Usnea 'Aide Memoire'

P.W. James

A5 booklet with drawings and many useful tips for identifying the British species of this difficult genus.

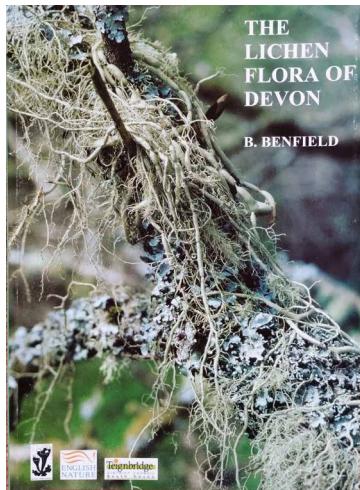
£1.00. Email for P&P.

Understanding Lichens

George Baron (1999)

An excellent introduction to lichenology, from the basic biology of lichens to their environmental importance as well as the history of the science.

£1.50 Email for P&P.

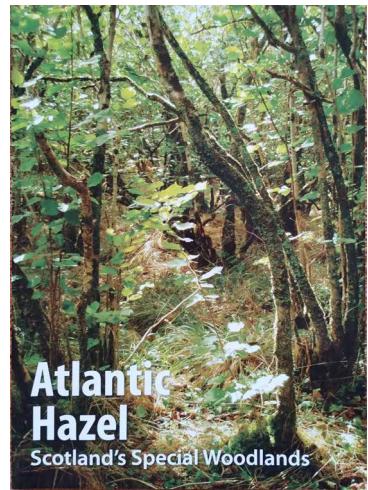


Greetings Cards/Notelets

Claire Dalby

A set of five cards with envelopes, featuring five exquisite pen and ink illustrations of British lichens.

£2.50 per set. Email for P&P.

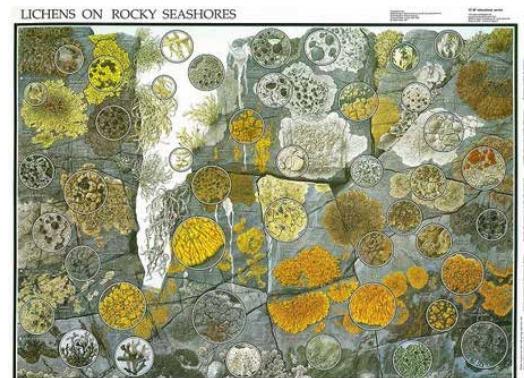


The Lichen Flora of Devon

B. Benfield (2001) 102 pp

An overview of the lichen flora in Devon, which should form a baseline against which changes in lichen populations due to climate change can be measured.

£6.00. Email for P&P.



Atlantic Hazel

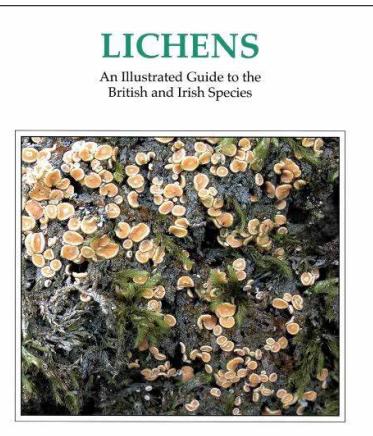
S. and B. Coppins (2012) 105 pp

The Atlantic hazelwoods of Scotland are older by far than the Atlantic oakwoods and older than some of the Caledonian pinewoods. This book aims to change the way people think about the hazel woods along the Atlantic seaboard.

£5.50. Email for P&P.

Lichen Wall Charts illustrated by Claire Dalby.

Two beautifully illustrated wall charts, 'Lichens on Trees' (cat.21) and 'Lichens on Rocky Seashores' (cat.22) have been produced by artist Claire Dalby. Each is A1 size (80cm wide x 60cm high) and features over 40 species in colour, nomenclature updated to 2010.


£2.50 each. Email for P&P. Posters will be sent in a cardboard tube.

Lichens – An Illustrated Guide to the British and Irish Species

Frank Dobson
7th Edition (reprint 2023)

The new edition of this popular book provides an invaluable guide to identifying the British and Irish species, both for the beginner and the more advanced lichenologist. With detailed air pollution references and distribution maps, it offers the environmentalist and ecologist a concise work of reference, compact enough to be used in the field. The 7th edition conforms with the nomenclature of 'Lichens of Great Britain and Ireland' (LGBI) ed. Smith, C.W. *et al* (2009) and more recent changes. Over 1,000 species are treated.

This new edition includes many species not currently in LGBI and a section by Mark Powell on lichenicolous fungi on *Physcia* and *Xanthoria*. Entries consist of a description of each species, a photograph, notes on habitat, chemical tests and line drawings of microscopic and other diagnostic features. Help is also provided in separating similar species. The popular generic lateral key has been retained and enlarged together with a section on sterile species. A generic synopsis is included to assist the more experienced lichenologist. Price £30 | Members only price £25. Email for P&P.

Frank S. Dobson

Other publications

Fungi of Northern Cyprus
£2.00 P&P – on application.

Synopsis Methodica Lichenum by Acharius
£1.00 plus P&P

Lichenographia Britannica by Turner and Borrer (1839)
This English language facsimile hardback edition has an introduction by Hawksworth and Seaward, written in 1978.
£2.00 plus P&P.

Publication of the Winter 2025 Bulletin

Copy for the Winter 2025 Bulletin should reach the editor (contact details on the inside front cover) by **1st October 2025**

British Lichen Society Bulletin no. 136

Summer 2025

Index

	<i>Page</i>
Features	
Microhabitat in relation to successful <i>Lobaria pulmonaria</i> transplants	Alison Averis 2
Lichenicolous fungi on epiphytic lichens in the New Forest: a modern checklist	Vince Giavarini 7
Mighty mites	Ann Claypole 23
Lichen conservation and ivy – a British Lichen Society statement	Neil A. Sanderson 25
Alert! Look out for <i>Candelaria concolor</i>	Raul Vicente 31
On becoming lichenocentric	Rachel Marsh 35
Lichen intermediate stage 2 course – corticolous communities	Jacq Lavender 39
Report for the BLS committee on IMC12 attendance (11–15 th August 2024)	Joanne Taylor 40
Mushroom language – theatre review	Rachel Marsh 42
How lichen changed my research career	Amy Cotterell 43
The trio meets again after 60 years	D. Richardson, D. Hill & A. Green 47
Phenotypic plasticity and symbiosis in lichens	Quiling Xu 48
BLS Field Meetings	
Dundreggan – BLS field meeting (12 th –18 th October 2024)	Pete Martin 53
Post-AGM Field Meeting – Kensington Gardens, London, 12th January 2025	John Skinner 72
BLS summer meeting 2024, Catalonia, in conjunction with the BrioLi group of the Institutó Catalana d'Història Natural (ICHN)	Maria José Chesa, Quiling Xu & Juliet Bailey 78
British Lichen Society Field Meetings & Workshops 2025/26	Graham Boswell 85
Regular articles	
British Isles list of lichens and lichenicolous fungi	Brian Coppins & Janet Simkin 87
Literature pertaining to British lichens – 76	Brian Coppins 95
New, rare and interesting lichens	Andy Cross 99
Society business	
Minutes of the ANNUAL GENERAL MEETING 11th January 2025	127
Miscellaneous	
Publications and other items for sale	140

